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Every positive integer is expressible as a product of prime numbers� in a
unique way	 Although it is easy to prove that this factorization exists� it is
believed very hard to factor an arbitrary integer	 We survey the best known
algorithms for this problem� and give some factorizations found at CWI	

�� Introduction

An integer n � � is said to be a prime number �or simply prime� if the only
divisors of n are �� and �n� There are in�nitely many prime numbers� the
�rst four being �� 	� 
� and �� If n � � and n is not prime� then n is said to be
composite� The integer � is neither prime nor composite�
The Fundamental Theorem of Arithmetic states that every positive integer

can be expressed as a �nite �perhaps empty� product of prime numbers� and
that this factorization is unique except for the ordering of the factors� Table
��� has some sample factorizations�
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Table ���� Sample factorizations

The existence of this factorization is an easy consequence of the de�nition
of prime number and the well�ordering principle� The uniqueness proof is
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only slightly harder� However this existence proof gives no clue about how
to e�ciently �nd the factors of a large given integer� No polynomial�time
algorithm for solving this problem is known��

Factoring large integers has fascinated mathematicians for centuries� Gauss
wrote

�The problem of distinguishing prime numbers from composites�
and of resolving composite numbers into their prime factors� is one
of the most important and useful in all of arithmetic� The dignity
of science seems to demand that every aid to the solution of such
an elegant and celebrated problem be zealously cultivated��

Some books are devoted to tabulating the factors of numbers of special form�
The most referenced such table is the Cunningham table ���� which lists known
factors of bn � � for bases b � �� and small n� Brent et al� ��� extend
these tables through b � ��� Some of these factorizations appear in ���� which
also has some factors of an � bn� Brillhart et al� ��� give factors of the
Fibonacci numbers and related Lucas numbers� The RSA Challenge ��
� is
building a table of factorizations of partition numbers�
Factorization was once primarily of academic interest� It gained in prac�

tical importance after the introduction of the RSA public�key cryptosystem
�see x	�
�� The cryptographic strength of RSA depends upon the di�culty of
factoring large numbers�
Let N be a large composite integer� Until the ���
�s� the best algorithms for

factoring N took time O�N �� for some � � 
� One such algorithm is trial divi�
sion� which tries to divideN by all primes up to

p
N � This changed whenMor�

rison and Brillhart��
� introduced the continued fraction method� whose
time ��	� is

exp
n�p

� � o���
�
�logN log logN����

o
� O

�
N
p

���o���� log logN� logN
�
�

Modern algorithms for factoring N fall into two major categories� Algo�
rithms in the �rst category �nd small prime factors quickly� These include
trial division� Pollard Rho� P ��� and the elliptic curve method� Algorithms in
the second category factor a number regardless of the sizes of its prime factors�
but cost much more when applied to larger integers� These algorithms include
continued fraction� quadratic sieve� and number �eld sieve�
In practice� algorithms in both categories are important� Given a large in�

teger with no clue about the sizes of its prime factors� one typically tries algo�
rithms in the �rst category until the cofactor �i�e�� the quotient after dividing
by known prime factors� of the original number is su�ciently small� Then one
tries an algorithm in the second category if the cofactor is not itself prime� If

�An algorithm is said to be polynomial�time if its worst case execution time is bounded
by a polynomial function of the length of the input� If one wants to factor N � whose length is
O�logN�� then an O��logN���� algorithm would be polynomial�time� whereas an O�N����
algorithm is not�
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one is unable to �nd a su�ciently small cofactor �or a prime cofactor� using
methods in the �rst category� the factorization remains incomplete�
The interpretation of �su�ciently small� has changed considerably as tech�

nology has progressed� In the ���
�s� John Brillhart and John Selfridge

��� p� ��� predicted that factoring numbers over �
 digits would be hard� In
the ���
�s� Richard Guy ��� p� ��� predicted that few numbers over �
 digits
would be factored� In ���� the cuto� is around �

���
 digits�
We illustrate some algorithms using N � �
����	 � 
�	 ���
�� This number

was selected using CWI�s street address�
Williams and Shallit ��
� give a computational history of factoring �and

primality testing� from ��

 to ��

� i�e�� before the era of electronic computers�
Richard Guy ��� gives a good survey of factorization methods known in ���
�
Brillhart et al� ��� give a chronology of developments in factorization� both
hardware and software� esp� the methods used by the Cunningham project�
Robert Silverman ���� gives a more recent exposition� Several textbooks
��� �� �� �� cover factorization�
We review some elementary number theory� We review some fundamental

algorithms which will be needed later�

�� Notations

The symbols Q� R� and Z denote the sets of rational numbers� real numbers�
and integers� respectively�
If x and y are integers� then x j y �read� x divides y� means that y is a

multiple of x� That is� x j y if and only if there exists k � Z such that y � kx�
The greatest common divisor �GCD� of two integers x and y is denoted

gcd�x� y�� The GCD is always positive unless x � y � 
� If gcd�x� y� � �� then
x and y are said to be coprime� they have no common divisors except ���

�� Review of Elementary Number Theory

This section reviews some elementary and analytic number theory� Proofs can
be found in many number theory textbooks�

���� Congruence classes and modular arithmetic

Fix n � 
� Two integers x and y are said to be congruent modulo n if x� y
is divisible by n� This is written

x � y �mod n��

For �xed n� the � relation is an equivalence relation �re�exive� symmetric�
transitive�� The equivalence classes are called congruence classes� A set with
exactly one representative from each congruence class is called a complete

residue system� There are exactly n congruence classes� The canonical
complete residue system is f
� �� �� � � � � n� �g�
We omit the modulus n� writing simply x � y� when the modulus is clear

from the context�
The � relation is preserved under addition� subtraction� and multiplication�

If x�� x�� y�� y�� and n are integers such that
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x� � y� �mod n� and x� � y� �mod n��

then

x� � x� � y� � y� �mod n��
x� � x� � y� � y� �mod n��

x�x� � y�y� �mod n��
�	���

These are easily proved using the de�nition of �� For example� x�x� � y�y� �
�x� � y��x� � y��x� � y�� is a sum of two multiples of n�
Equation �	��� says that it is meaningful to add� subtract or multiply two

congruence classes� since the equivalence class of the result does not depend
upon the selections of the representatives� The congruence classes modulo n
form a commutative ring under these operations� This ring� denoted by Z�nZ�
is called integers modulo n� When n is prime� division by nonzero elements
is possible� and this ring is a �eld� often written GF�n��
A corollary to �	��� is that if f is a polynomial in k variables with integer

coe�cients� and if xi � yi �mod n� for � � i � k� then

f�x�� x�� � � � � xk� � f�y�� y�� � � � � yk� �mod n��

Occasionally we write r� � r� where r� and r� are rational numbers rather
than integers� The notation a��b� � a��b� �mod n� means that the numera�
tor of a��b�� a��b� is divisible by n and that its denominator is coprime to n�
That is� a�b� � a�b� �mod n� and gcd�b�b�� n� � ��

���� Properties of prime numbers

Let p be a prime number� The following properties are stated without proof�

� If x� y � Z� and p j xy� then p j x or p j y� Equivalently� if xy � 

�mod p�� then x � 
 �mod p� or y � 
 �mod p��

� Unique factorization� As previously mentioned� every positive integer can
be written as a �perhaps empty� product of primes� and this representa�
tion is unique except for ordering� See Table ��� for some examples�

� The polynomials �X � Y �p and Xp � Y p are congruent modulo p� For
example� every term in

�X � Y �� �X� � Y � � 
X�Y � �
X�Y � � �
X�Y � � 
XY �

is divisible by 
� This can be proved using the binomial theorem�
� �Fermat�s little theorem�� If a � Z� then ap � a �mod p�� In particular�
if p does not divide a� then ap�� � � �mod p�� One proof uses the last
property and induction on a�

���� Chinese remainder theorem

Let n� and n� be coprime positive integers� If r� and r� are arbitrary integers�
then the two congruences
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x � r� �mod n�� and x � r� �mod n�� �	�	�

may be replaced by a single congruence

x � r �mod n�n��� �	���

where r is chosen to satisfy r � r� �mod n�� and r � r� �mod n��� This is
known as the Chinese Remainder Theorem�
For example� the two congruences

x � 	 �mod �	� and x � � �mod ��� �	�
�

are equivalent to the single congruence x � �� �mod ����� To con�rm this�
note �rst that � � 
� � 
� � � � �	 � 	 � ��� such an equation exists since �	
and �� are coprime �cf� ������� If �	�
� holds� then there exist integers k� and
k� such that x � �	k� � 	 � ��k� � �� Hence

x � 
�x� 
�x � 
����k� � ��� 
���	k� � 	�
� ���k� � ��	k� � 	�
 � �����k� � 	k� � �� � ���

which shows that x � �� �mod ����� Conversely� if x � �� �mod ����� say
x � ���k � ��� then x � �	���k � �� � 	 � ����	k � 
� � �� implying �	�
��
A generalization allows more than two moduli� If gcd�ni� nj� � � for � �

i � j � k �i�e�� if the integers n�� � � � � nk are pairwise coprime�� and if ri � Z
for all i� then the system of congruences

x � ri �mod ni� �� � i � k�

is equivalent to a single congruence

x � r �mod n�n� � � �nk�� �	���

when r is suitably chosen� There are e�cient ways to �nd this r given the fnig
and frig�
When we know an upper bound on an integer x� then we can determine

x uniquely if we know it modulo enough primes� More precisely� if we know
that jxj � B� and if we choose n�n� � � �nk � �B � �� then �	��� determines x
uniquely�

���� Smooth numbers

An integer n is said to be smooth with respect to a bound B if no prime
factor of n exceeds B� In Table ���� the numbers ���
� �


� �

�� and �

�
are smooth with respect to 	
�
For �xed B and x 	 B� the number of positive integers less than x and

smooth with respect to B is approximately xu�u� where u � lnx� lnB ��	�
p� ����
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���� Density of prime numbers

The Prime Number Theorem states the asymptotic density of primes� Let
��x� denote the number of primes not exceeding the real number x� Then

lim
x���

��x� ln�x�

x
� �� �	���

In other words� ��x� is approximately x� ln�x� for large x�
A numerical example is x � �


� Then ���


� � ��� whereas �


� ln��


�


 �������
A more accurate approximation is x��lnx� ��� This predicts ������ primes

below �


�
Riesel ��� Chapter �� gives some history about accurate computation of ��x�

for large x�

�� Some Essential Algorithms

We will assume that the reader is familiar with the following important algo�
rithms�

Multiple�precision arithmetic��� x����� Two integers of magnitude at
most N can be added� subtracted� or compared in time O�logN�� by
operating on one digit at a time� The classical multiplication and divi�
sion algorithms take time O��logN���� A corollary is that addition and
subtraction modulo N can be done in time O�logN�� if the operands and
result are required to be in the interval �
� N���� Modular multiplication
can be done in time O��logN����

Modular exponentiation ��� pp� ������� If e is a nonnegative integer
and 
 � a � N then the remainder ae mod N can be computed with
O�log e� multiplications modulo N � and hence in time O��logN�� log e��
using the binary method of exponentiation�

Greatest common divisor��� pp� 	������ If n� and n� are positive in�
tegers� then their greatest common divisor can be found in O�log�min�n��
n���� operations on integers at most max�n�� n��� The extended GCD
algorithm also �nds two integers m�� m� such that

gcd�n�� n�� � m�n� �m�n�� jm�j � jn�j� jm�j � jn�j� �����

�� RSA public�key cryptosystem

The RSA cryptosystem �named after its inventorsRivest	 Shamir� andAdle�
man� ��� is the �rst public�key system introduced� and remains the most used
public�key cryptosystem today� The strength of this cryptosystem depends
upon the di�culty of factoring large integers�
A public�key cryptosystem requires each user to have his own encryption

procedure E and private decryption procedure D� Everyone�s E is known to
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all other users� like a city telephone directory� Only the user knows his D�
These procedures must be bijections and inverses of each other� D�E�M�� �
E�D�M�� �M for all messages M � Both D and E must be cheap to execute�
but it must be computationally infeasible to �nd D given only E�
RSA achieves these objectives by letting each user pick two large primes p

and q with p �� q� Let N � pq� Choose two exponents e� d with de � �
�mod �p � ���q � ���� If M is an integer� then Fermat�s little theorem implies
Mde � M �mod p� and Mde � M �mod q�� hence Mde � M �mod N�
for all M � Let the message space be the interval �
� N � �� �a long message
can be split into chunks�� De�ne the encryption and decryption procedures by
E�M� � Me �mod N� and D�M� � Md �mod N�� The values of e and N
are public� but d� p� q are private�
These satisfy all of the public�key requirements except possibly the require�

ment that it be hard to �nd D given E� If factoring is easy� then an intruder
can �nd p and q given N � pq� from this the intruder can �nd �p � ���q � ��
and hence d since he knows e� That is� it is easy to �nd D given E if factoring
is easy� The converse is unknown� nobody has proven that factoring is easy
if one can easily �nd D given E� However� the problems are believed to be
equivalent�
A ���� report ��� p� ��� recommends that any RSA public�key modulus �i�e��

the product N � pq� be at least �
�� bits �about 	
� decimal digits� if the
data must remain secure for �
 years� but does not make a recommendation
for longer periods�


� Algorithms for finding small prime factors of large numbers

���� Trial division

If N is composite� then at least one prime divisor of N is at most
p
N � To

factor N � the trial division algorithm successively divides N by primes �� 	� 
�
� � � � up to bpNc�
If p is the second largest prime factor of an integer N � then trial division

takes O�p� steps �or O�p� ln p� steps if one does trial division only by primes
� see x	�
��
Almost all factoring programs attempt trial division by the smallest primes�

Even if N is �


 decimal digits long� it takes only a few seconds to divide N
by all primes up to �
	�
Sometimes the prime divisors of N are known to have a special form� For

example� if p j an � � but p � ak � � for any k where k � n and k j n� then
p � � �mod n�� This information facilitates trial division� since it restricts
the range of possible divisors� For such numbers� one might try trial division
by all qualifying primes below ��� or even higher� Unless N has a special form�
trial division is impractical for �nding prime divisors above �

�

���� Pollard Rho

In ���� and ���
� John Pollard announced two new algorithms for �nding
small factors of large integers� Each algorithm does a sequence of polynomial
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operations �additions� subtractions� multiplications� in such a way that inter�
mediate results are highly composite but nonzero� Suppose N is a number to
be factored and p j N � If r is one of the intermediate results and p j r� then
p j gcd�r� N�� we hope that this GCD does not equal N itself�
The Pollard Rho algorithm ���� iterates a function� Let f � Z�X� be a

univariate polynomial with integer coe�cients� Select x� arbitrarily and de�ne

xn�� � f�xn� �n � 
�� �����

If p is prime� then the sequence fxn mod pgn�� must eventually repeat� say
xn� � xn� �mod p� where 
 � n� � n�� Since f is a polynomial function�
this and �	��� imply xn��k � xn��k �mod p� for all k � 
� That is� the
sequence fxn mod pgn�� is eventually periodic� with period dividing n� � n��
If n � n� and �n� � n�� j n� then x�n � xn �mod p�� This is the idea behind
one variation of Pollard Rho� test gcd�x�n� xn� N� for n � �� �� � � � until it is
non�trivial �success� or until n is too large �failure��


� �� �� 
� ��� ���� ��

 � �mod 
�	�


�� 
	

Figure 
��� Pollard Rho cycle modulo 
�	 using f�X� � X� � � and x� � 


Figure ��� shows the pattern modulo 
�	� The �rst repetition is x
 � x� � ��
�mod 
�	�� Since f is a polynomial with integer coe�cients� the sequence has
period 
 except for its �rst few terms� xn�� � xn �mod 
�	� whenever n � ��
In particular� x�� � x� �mod 
�	��
When attempting to factor N � �
����	 this way� the actual computations

are modulo N � 
�	 � ��
�� but we visualize them as being done separately
modulo the �unknown� prime factors of N � This abstraction is justi�ed by the
Chinese Remainder Theorem� Figure ��� outlines the sequence of computations
�all congruences are modulo �
����	��

n x�n�� x�n xn gcd�x�n � xn� N�
� x� � � x� � � x� � � �
� x� � 
 x� � �� x� � � �
	 x� � ��� x� � �
�		
 x� � 
 �
� x	 � 	����� x
 � ���	�� x� � �� �

 x
 � ��	��� x�� � �����	 x� � ��� 
�	

Figure 
��� Factorization of �
����	 via Pollard Rho

The cycle length is considerably longer modulo ��
�� for which the �rst
duplicate is x�� � x�� � ��
 �mod ��
��� The factor ��
� would be found
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while testing gcd�x
� � x��� N�� but 
�	 is found �rst� while testing gcd�x�� �
x�� N��

������ Complexity of Pollard Rho�

By �	���� the polynomial operations required by Pollard Rho can all be done
modulo N � after which one checks gcd�r mod N� N� rather than gcd�r� N��
This procedure ensures that the intermediate results do not grow too big� and
is re�ected in the data shown in Figure ����
If p is a prime dividingN � then Pollard Rho appears to take O�pp� iterations

to �nd p� Given xn�� and x�n��� the n�th iteration computes

xn � f�xn��� �mod N� and x�n � f�f�x�n���� �mod N�

and tests gcd�x�n � xn� N�� If f�X� � X� � �� then this is three modu�
lar multiplications� four modular additions �subtractions are counted as addi�
tions�� and one GCD operation per iteration� If p � O�

p
N�� then the time

is O�pp�logN��� � O�N����logN��� bit operations� This is asymptotically

better than the O�p� � O�N���� divisions needed by trial division�
It is possible to trade most of the GCDs withN for multiplications moduloN �

As stated� the algorithm tests each gcd�x�n�xn� N�� We anticipate that most
GCDs will be trivial �otherwise we�ve found a factor�� We can replace two
GCD tests

gcd�r� N� and gcd�s� N� �����

by a single test

gcd�rs mod N� N�� ���	��

The GCD in ���	� will be non�trivial if and only if at least one GCD in �����
is non�trivial� If rs is coprime to N � then both r and s must be coprime to N �
we trade the two GCDs in ����� for one modular multiplication and the one
GCD in ���	�� Conversely� if rs shares a factor with N � then at least one GCD
in ����� must be non�trivial� the latter event is su�ciently rare that we can
a�ord to test both GCDs in case they yield separate factors of N � In practice�
one takes the product of several x�n � xn before doing a GCD with N �
Brent ��� proposes testing gcd�xm � xn� N� whenever n is a power of �

and 	n�� � m � �n instead of testing values of gcd�x�n � xn� N�� Brent�s
variation would �nd the prime 
�	 while testing gcd�x�� � x
� N� rather than
gcd�x���x�� N�� and would �nd the prime ��
� while testing gcd�x����x��� N�
rather than gcd�x
� � x��� N�� Brent�s variation takes about twice as many
iterations� but it is about �� faster overall because each iteration applies the
polynomial f once rather than three times� Brent and Pollard ��� used
this to �nd the ���digit prime factor ��	��� �	��

���� of the ���digit Fermat
number ���� � ��
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���� P � �
Soon after discovering Pollard Rho� John Pollard found another method which
�nds small prime factors� His new method� called the P �� method ����� �nds
a prime factor p of N if p� � is smooth� In the worst case� when �p� ���� is
prime� the P � � method can require O�p� arithmetic operations to �nd p� as
in trial division� But some prime divisors are found very quickly�
The P � � method is based on Fermat�s little theorem �x	���� Suppose M

is such that �p � �� j M � If gcd�a� N� � �� then aM � � �mod p�� implying
p j gcd�aM � �� N�� For example� if M � ��
 � �� � 	 � 
 � �� then this will �nd
p if p is among

�� 	� 
� �� ��� �	� ��� 	�� �	� ��� ��� ����

Eleven of the �
 primes below �

 are in this list� If we replace ��
 by ��!
�say�� then we will also �nd ��� ��� �	� 	�� ��� ��� �	� ��� ��� and many larger
primes�
The value of M is typically the product of small primes or prime powers� If

M is the product of all prime powers below a bound B� then M 
 exp�B�� so
the binary method of exponentiation needs O�logM� � O�B� multiplications
modulo N to compute aM mod N � After one GCD operation� we hope to
discover p�
For example� suppose N � �
����	 and B � 	
� Figure ��	 summarizes the

computations if we begin with x� � a � �� and let xq denote our intermediate
result after processing a power of the prime q� In this example� we choose to
check each gcd�xq � �� N� rather than only the �nal gcd�x�
 � �� N�� We can
stop early when we �nd the factor ��
� of x�� � ��

x� � �
x� � x��� � �

	� gcd�x� � �� �
����	� � �
x� � x�	� � �	���� gcd�x� � �� �
����	� � �
x� � x��� � �	�
�� gcd�x� � �� �
����	� � �
x	 � x	� � ������ gcd�x	 � �� �
����	� � �
x�� � x��	 � 	
	��� gcd�x�� � �� �
����	� � �
x�� � x���� � 	
�	
� gcd�x�� � �� �
����	� � ��
�

Figure 
��� Factoring �
����	 via P � � with x� � � and B� � 	


The factor ��
� is found since ��
�� � � � � 	 � 
� � �	 is a product of prime
powers dividing �� � �� � �
 � � � �� � �	� On the other hand 
�	� � � � � ��� is
not of this form� Observe that the P � � method �nds ��
� �rst whereas trial
division and Pollard Rho �nd 
�	 �rst� The smallest prime factor of a number
is not always the easiest factor to �nd�

	��



���� Step ��

A modi�cation to the P � � method �called Step �� allows p � � to have
one prime divisor exceeding B� if that prime divisor is not too big ��� �� ���
Speci�cally� suppose p is a prime divisor of N and

p� � � m � q where m jM�

If gcd�a� N� � � and A � aM �mod N�� then Fermat�s theorem implies

Aq � �
aM

�q
� aMq � �amq�

M�m
�
�
ap��

�M�m � �M�m � � �mod p��

That is� the prime p will divide gcd�Aq � �� N��
If q is not too large� then we can �nd p� using the output A from Step �� The

idea ��� is to test several gcd�An� �An� � N� where n� �� n�� this will reveal p
if q j �n� � n��� If we want to test all primes q � B� for some B�� then we can
use two tables of size O�pB� �� one containing all values of An� mod N and
another all values of An� mod N � Each entry in one table is compared to each
entry in the other� Variations work for the P � � and elliptic curve methods�
which are covered in the next two sections�
Example factors found by P �� at CWI �with B � 	
 million� are the factor

p�� of �

�
 � � and the factor p�� of ��


� � �� where

p�� � ����� 	�����

�� ��������
� �	�	���
�	�
p�� � ���	�
 �	
������� 
����
���� 

�


�����

p�� � � � �� � � � ��� � ����� � 	����� � ������ � ��
���� � ��	�������
p�� � � � �� � 	� � ��	 � �	� � 
	�� � ���� � 	�
�� � �����

� � 	������	�

These factors appear in the update to ����

���� P � �
The P � � method �nds a factor p of N if p � � is su�ciently smooth� The
method has found many factors� but fails miserably if p � � has a very large
factor� such as if p� � � �q for some prime q�
In ����� Hugh Williams ���� published a method which works when p� �

�rather than p� �� is smooth� Williams�s method� called the P � � method�
operates in the �nite �eld GF�p�� having p� elements and characteristic p�
Let P be an integer and assume that P � � � is is a quadratic non�residue

�i�e�� not a square� modulo p� Denote f�X� � X� � PX � �� This quadratic
has two roots 	 and 	�� over GF�p��� which satisfy 	 � 	�� � P � Because
P p � P �mod p�� one root of f is 	p�

f�	p� � 	�p � P	p � � � �	� � P	� ��p � f�	�p � 
 in GF�p���

Since f has only two roots� either 	p � 	 or 	p � 	��� If 	p � 	� then
	 � GF�p�� and

P � � � � �	� 	��
�� � � � �

	� 	��
��
�

	��



This is impossible since 	 � 	�� � GF�p� and P � � � is assumed to be a
quadratic non�residue modulo p� Therefore 	p � 	��� implying 	p�� � ��
The P � � method selects a in the multiplicative group GF�p�� of order

p � �� and �nds p if this order is smooth� The P � � method is structurally
similar to P � �� but takes powers of 	 � GF�p�� and succeeds if the order of
	 is smooth� One way to do the arithmetic observes that 	 and � is a basis
for GF�p�� over GF�p�� and uses arithmetic modulo N in place of arithmetic
modulo the �unknown� prime p� This can be improved considerably by using
Lucas functions to manipulate values of 	e � 	�e rather than 	e �����
There is no known way to check beforehand whether P �� � is a non�residue

without knowing p� If one runs the method three times using three values for P �
then there is an ���
 chance that at least one of the values for P �� � will be
a quadratic non�residue� When P �� � is a quadratic residue� then 	 � GF�p��
and the P � � method becomes an expensive variant of the P � � method�
One factor found by P �� at CWI �with B � 	
 million� is the factor p�	 of

�
��� � �� where

p�	 � ���
�
	 �
���
�
�� 
���

��	� �	�
�������
p�	 � � � �

� � ��	 � ���	 � ����� � 	��	� � ������� � �		��		 � �	�

�	
��

���� Elliptic Curve Method

The P � � methods �nd a factor p of N if either p � � is su�ciently smooth�
However they fail if both p � � and p � � have large prime factors� This
happens frequently� for example� both �p � ���� and �p � ���� are primes for
p � ��� ��	� 	��� �
	� ��	� In ���
� Hendrik Lenstra� Jr� ��� overcame
this di�culty when he announced a similar method called the Elliptic Curve
Method� abbreviated ECM�
An elliptic curve over a �eld K of characteristic not � is the set of solutions

�x� y� � K �K to a cubic equation

Y � � X� �AX� �BX � C� �����

together with a special point �conceptually ��� ��� called the point at in�
�nity� There is one restriction to the coe�cients in ������ the discriminant of
the cubic polynomial must be nonzero� i�e��

��A�C �A�B� � ��ABC � �B� � ��C� �� 
�
The points on an elliptic curve form an abelian group E�K� when the group

operations are suitably de�ned� as illustrated in Figure ���� The negation of
the point at in�nity is itself� the negation of any other point P� � �x�� y�� is
de�ned to be �P� � �x�� �y��� For addition� suppose that P� and P� are two
points on the elliptic curve� If either P� or P� is the point at in�nity� then
de�ne P� � P� to be the other point� Otherwise suppose P� � �x�� y�� and
P� � �x�� y��� If x� �� x�� then de�ne P� � P� � �P�� where P� is the point
where the straight line through P� and P� re�intersects ������ A calculation
gives

	��



m �
y� � y�
x� � x�

�

P� � �x�� y��� where x� � m� �A� x� � x��
y� � y� �m�x� � x���

���
�

When instead x� � x�� then y�� � y�� by ������ If y� � �y�� then de�ne
P� � P� to be the point at in�nity� If y� �� y� �so that y� � �y� �� 
��
then de�ne P� � P� � �P�� with P� de�ned as in ���
�� except that we use
m � �	x�� � �Ax� �B���y� �slope of tangent line at P� � P���
It is amazing that this � de�nes an associative operation� All group oper�

ations are de�ned in terms of ordinary addition� subtraction� multiplication�
division� and comparison �no square roots�� and are meaningful over arbitrary
�elds where � �� 
� In particular� they are meaningful if K � GF�p�� where p
is an odd prime� The resulting elliptic curve group E�GF�p�� is �nite� Hasse
���� p� �	�� showed that its order is p � � � 
 where j
 j � �pp� By changing
the constants in ������ we get another curve� whose order is usually di�erent�
If N is composite� say N � pq where p and q are distinct odd primes� then

the ring Z�NZ is not a �eld� but we can use ����� to de�ne a curve and attempt
to use the algebraic rules to do group operations modulo N � We will fail �i�e��
be unable to execute the algebraic operations� only if we attempt to divide by
a nonzero� non�invertible number modulo N ���� Such a denominator �called a
zero divisor� will be divisible by p or q but not both� and will give us a factor
of N �

For example� suppose N � �
����	� We might choose

E � Y � � X� �X � � and P� � �
� ���

It turns out that jE�GF�
�	��j � 
�
 � �� � 
 � � and jE�GF���
���j � ���� �
�� � ���� If we attempt to compute 
�
P� �or any multiple thereof�� then we
will strike the identity element of the group modulo 
�	� but probably not
modulo ��
�� This will cause us to attempt to divide by a nonzero multiple
of 
�	� and the factor 
�	 will be found� Indeed� if we work modulo �
����	�
then

P� � �
� ���
�P� � ���	��
� ����
���
�P� � �	
���
� 	
�
�
��
�P� � ��

����� 
	�	
���
��P� � ��
����
� �

�����
	�P� � ��
�
��� 	�
�����
��P� � ��
����� ��	�	���

�
P� � ��P� � ��P� � �
�

	�� �
���
��
��
P� � �����	�� 
�

����
	�
P� � ��
�

�� ��������
��
P� � �����
�� �
������

Next we attempt to compute
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Figure 
��� Group law on y� � x� � �x� �

	






�
P� � ��
P� � �
P� � �����
�� �
����� � �
�

	�� ��
���
��
The x�coordinates ����
� and 
�

	� are distinct� but their di�erence


�

	�� ����
� � 	


�� � �	 � �� � 
�	
is not invertible modulo N � 
�	 � ��
�� A GCD �nds the factor 
�	�
One early number done by ECM is the ��	�rd Fibonacci number F
��� Its

algebraic cofactor has �ve prime factors� namely

F
��

�F�
�
� p�� � p�� � p�� � p�� � p���

where

p�� � �� ����
�	�	�� p�� � � � �� � 	
�� � 	�

�����
p�� � � � � � 	 � �� � �� � ��� � �


	�

p�� � �
� �
����
�
�� p�� � � � �� � �
�
� � ��	���
��
p�� � � � � � 	 � ��� � ���� � �����
��

p�� � ���	
 	����

���� p�� � � � �� � �
�
� 
����������
p�� � � � � � 	 � 
	 � ��� � �
� � ��
����	�

p�� � �	�
	� �������	��� p�� � � � �� � 	� � 
 � ��� � 	��� � �����
��
p�� � � � � � ��	 � �
�� � ���� � ����		�

and p�� is a �	�digit prime� The P � � method �with B � �



 and a Step �
bound of �
�� missed all four small factors� although the method �nds many
others with these sizes� A two�step P � � algorithm found p��� however� it
missed p�� because the chosen value of P

� � � was a quadratic residue mod�
ulo p��� ECM found all four small prime factors easily�
One ECM factor found by CWI ��� is the �
�digit factor

�
��	���

 
��
	�
��� ���
����
� �
����	���

of ����� � �� The job was run on the CRAY C�
 at SARA� using ��� curves�
The �
��nd curve had very smooth order�

�
 � 	 � �
�� � ���� � ����� � ����� � 

��� � ���

� � �
�	
	 � �
	
�
��
The largest factor found by ECM is the �	�digit factor


�� ����	


�� �
	�
����� 
��

�
�
� ��	
�	��	�

of the partition number p�������� It was found by Franz�Dieter Berger� Uni�
versity of Saarland �Germany�� in ���	�

�� Algorithms for factoring arbitrary integers

The next several algorithms try to factor an odd integer N by �nding two
squares X� and Y � such that

X� � Y � �mod N� and gcd�XY� N� � �� �����

	
�



Then they test gcd�X � Y� N�� hoping for a non�trivial factor of N � Whereas
the algorithms in x� require time depending primarily on p to �nd the smallest
prime factor p of N � the times for the upcoming algorithms depend primarily
on the size of N itself�

If N has two distinct odd prime factors p� and p�� and if X and Y are randomly
selected subject to ����� then gcd�X �Y� N� will be non�trivial �i�e�� neither �
nor N� exactly 

 of the time� Indeed� choose Z such that Z � � �mod p��
and Z � �� �mod p��� this Z exists by the Chinese remainder theorem�
Then� given X � the solutions Y of X� � Y � �mod N� are Y � X � Y � �X �
Y � XZ� and Y � �XZ� The corresponding values of gcd�X � Y� N� are
N � �� p� and p�� respectively� Two of these four are non�trivial� If N has k
distinct odd prime factors� then the probability of success with a single �X� Y �
pair is �� ���k�
These methods don�t work if N is a prime power �i�e�� if N doesn�t have two

distinct prime factors�� but this condition is easily checked� If N � pk where
p is prime and k � �� then N � � � pk � � is divisible by p� �� By Fermat�s
little theorem� if gcd�a� N� � �� then

aN�� �
�
ap��

��N�����p��� � ��N�����p��� � � �mod p��

Consequently gcd�aN�� � �� N� will be divisible by p� If instead we �nd an a
such that gcd�aN � a� N� � �� then n cannot be a prime power�

���� Finding squares through products

The best methods for constructing congruences of the form ����� start by ac�
cumulating several congruences

Ai � Bi �mod N�� �����

where each Ai and each Bi is either a square or a square times a smooth
number� These congruences are also called relations� For N � �
����	� a
sample relation is

��




� �
�� �mod N��

in which all prime divisors of ��




 � �� � 
� � �� and of �
�� � 	 � �	� are
under 	
�
The algorithms vary in how they �nd the relations ������ Once su�ciently

many relations are found� each algorithm attempts to �nd a non�empty set S
of indices such that bothY

i�S

Ai and
Y
i�S

Bi ���	�

are squares� The product of the corresponding congruences is a congruence of
the form ������

	
�



We illustrate with a small example� using N � �� � � � ��� The left side of
Figure ��� lists some congruences modulo ��� in which the only prime factors
of each side are �� 	� 
� We deliberately suppress the congruences �� � �
and �
� � �
� where both sides are squares� since either of these factors ��
immediately�

�
 � �	�
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�� � �

�
 � ��
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Figure ���� Some congruences mod ��� involving powers of �� 	� 


We now multiply some of these congruences so as to generate squares on
both sides� For example� �
 � 	�
 � 	 � ��	 becomes ��� � 
� � 	�� Rewrite
this as ��
� � ���� This congruence factors ��� since gcd���
 � ��� ��� �
gcd��		� ��� � ��
We might instead have chosen to multiply ��
 � �� by 	�
 � ��	� This gives

�� � 
� � �� � 	�� which is the same as �

� � �
��� Since gcd��

� �
�� ��� �
gcd���� ��� � �� this congruence does not yield a factorization�
The decision to multiply �
 � 	 by 	�
 � ��	� or ��
 � �� by 	�
 � ��	� is

made by looking at the exponents of the primes in the resulting product� All
exponents in ��� � 
� � 	� and in �� � 
� � �� � 	� are even� There are eight
congruences in Figure ���� let the exponents e� to e
 be one or zero� depending
upon whether the corresponding congruence is included in or excluded from
the product� The product congruence

�
e� � 

e� � ��e� � �
e� � �
e� � ��
e� � 	�
e� � 	��e�

� ��	��e� � �����e� � ��
�e� � ����e� � 	e� � ��e� � ��	e� � ����e�
�����

factors into

�e���e���e���e��	e� � 	�e���e��e��e� � 
e���e���e��e���e��e�

� ����e��e��e��e��e� � ��e��e���e� � 	�e��e��e���e� � 
e� �

Both sides will be squares precisely when all exponents are even� This is equiv�
alent to requiring that all elements of the matrix�vector product

	
	



�
���������


 � � 
 
 
 
 �

 
 
 � 
 
 
 �
� 
 
 
 � � � 

� � � � 
 
 
 �
� 
 
 � 
 
 
 


 � 
 
 � � � 


 
 � 
 
 
 
 


	








�

�
�����������

e�
e�
e�
e�
e�
e�
e	
e


	










�

���
�

be even�
Equation ���
� has the form Be � � �mod ��� where e is the exponent

vector and B is the � � � exponent matrix hidden in the right of Figure ���
but reduced modulo �� The eight column vectors must be linearly dependent
since all are in a space of dimension at most �� This is equivalent to saying
that there exists a nonzero e � GF���
 such that Be � ��
In this example� the �fth� sixth� and seventh columns ofB are all �
� 
� �� 
� 
�

�� 
�T� Any two of these sum to zero modulo �� This corresponds to multiply�
ing two of the three congruences �
 � 	� ��
 � ��� and 	�
 � ��	� as we did
earlier�
Another vector in the null space of B is ��� �� 
� �� 
� 
� �� ��T� The congru�

ence

�
 � 

 � �
 � 	�
 � 	�� � ��	�� � ����� � ���� � ��	 � ���� �mod ���

becomes ���


� � ���� �mod ���� which again gives the factorization �� �
� � ���
Traditionally� one solved the system Be � � by a variation of Gaussian

elimination� Recently some iterative methods ��� 	� �� ��� have been found� The
iterative methods are superior when the matrix is large� since they require less
storage �matrices arising from integer factorization problems are very sparse��
For these large� sparse� matrices� the iterative methods are also faster � if B is
an n� n matrix� then Gaussian elimination uses O�n�� bit operations but the
iterative methods take O�n� applications of the matrix B� which is time O�n��
if the number of nonzero entries per column remains bounded as n grows�

���� Factor base

The set of primes appearing in the factorizations in Figure ��� is called the
factor base� Often it is convenient to also include �� in the factor base� If we
allow primes below B to appear� then the size of the factor base is about ��B�
�see x	�
 for estimates of ��B���

���� Free relations

In the last example� while factoring �� with a factor base of f��� �� 	� 
g� we
could have used the four trivial congruences

�� � ��� � � �� 	 � 	� 
 � 
 �����

	
�



in the product ������ For example� although 

 � �
 and ����� � ���� are not
squares� the congruence

� � 	 � 

 � �
 � � � 	 � ����� � ���� �mod ���

yields �

� � ��� �mod ��� and a factorization� The congruences in ����� are
called free relations� because the e�ort required to �nd the relations does not
depend on the size of N �
In this example� which uses the factor base f��� �� 	� 
g on both sides� we

could dispense with the free relations and use the factorizations �including neg�
ative exponents� of the quotients ��
�	�� �

���� � � � directly� Each rational
quotient is congruent to �� and the resulting matrix will be smaller since each
prime appears only once �not once per side�� The Number Field Sieve �x����
uses free relations which are more complicated than those shown here� and in
which the two factor bases are di�erent� so this simpli�cation does not work
there�

���� Continued fraction method

The continued fraction method �abbreviated CFRAC� is no longer in contention
as a modern factoring method� but we include it because it is similar to some
modern methods and easier to understand� It was used to factor the seventh
Fermat number �	� digits� in ���
 ��
� p� �����

���
 � � � 
����
� ���������� � 
� 
�����

�� 
���

�����
CFRAC looks for congruences X� � r �mod N� with small r �speci�cally

r � O�pN��� For each congruence it �nds� it attempts to factor r using the
factor base� Where r is smooth� the congruence is saved so it can be multiplied
by other such congruences to form squares on both sides�
If N is a perfect square� then it is easy to factor N � Otherwise

p
N is

irrational� There exist in�nitely many rational approximations P�Q of
p
N

such that����PQ �
p
N

���� � �

Q�
�

If P�Q is any such approximation and we choose � such that P�Q �
p
N���Q��

then

P � �NQ� �
�
Q
p
N � ��Q

��
�NQ� � ��

p
N � ���Q��

Since j�j � �� this shows that jP ��NQ�j � �pN���Q�� Hence all such values
of P � � NQ� are O�pN�� as desired� We know a square root of P � � NQ�

modulo N � namely P �
As an example� with N � �
����	� the �rst �
 continued fraction approxi�

mations to
p
N appear in Table ���� Three values of P � �NQ� are

	





Convergent P�Q P � �N �Q�
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�	�� �		 � � � ��

Table ���� Approximations to
p
�
����	

����	� �N � ��� � ��� � �� � � � ���
���	�	��N � ��	� � ���� � �� � �� � ���

�
���
��
��N � �
�	��� � �		 � � � ���
�����

The product of the three right sides in ����� is a square� namely �� ��� ���� �����
Multiply the three left sides and suppress the multiples of N to reveal

�����	 � ���	�	 � �
���
��
�� � �
�� � � � �� � ���� �mod N��

Reduce each parenthesized argument moduloN to get �
��� � �
��� �mod N��
Unfortunately� this trivial congruence does not yield a factorization� We could
try more� but will instead illustrate other algorithms�
Table ��� gives values of P and Q to full precision� The recurrences for P

and Q allow one to work with P mod N and Q mod N instead of P and Q
themselves� and can be evaluated quickly� For example� the numerator and
denominator of the last entry in Table ��� are the sums of those parts of the
two previous entries�
Some small primes �e�g�� 	� 
� ��� are missing in Table ���� This is because

they are not quadratic residues modulo N � If pj�P ��NQ�� where gcd�P� Q� �
�� then N must be a quadratic residue modulo p unless p j N � Unless N is a
perfect square� only half of the primes �asymptotically� have N as a quadratic
residue� If B is the upper limit on the factor base� then the factor base size is
about ��B��� rather than ��B��

	
�



���� Sieving

Much of the time in CFRAC is spent factoring the residues P � � NQ�� to
test whether they are smooth� This work is done primarily by trial division�
although one may employ the other methods in this survey too�
Quadratic Sieve �see x���� eliminates this burden� If f � Z�X � is a univariate

polynomial with integer coe�cients� and p is a prime� then the values of x for
which p j f�x� lie in a few arithmetic progressions� By �	���� if k is an integer�
f�x � kp� � f�x� �mod p�� Therefore f�x � kp� will be divisible by p if and
only if f�x� is divisible by p�
Suppose we want to evaluate a polynomial f at several consecutive values

of x and check each value for smoothness� Start by building a table of values
of f�x�� For each prime p in our factor base� �nd the roots of f modulo p� by
factoring f�X� over GF�p� ��� x������� Then� for each x such that f�x� � 

�mod p�� replace our tabulated value of f�x� by f�x��p� After processing all
primes in our factor base� if any table entry is ��� then the corresponding f�x�
was smooth�
This procedure can be improved considerably� One improvement tabulates

log jf�x�j rather than f�x�� and subtracts log p rather than dividing by p� The
logarithms can be approximate� perhaps to base �� At the end� look for small
values in the table� not just for a value of log � � 
� This procedure will also
�nd some values of x for which f�x� is smooth but not squarefree �i�e�� for
which a prime power divides f�x���

���� Quadratic sieve

Using the ideas in the last section� Quadratic Sieve ���� looks at the values
of a quadratic polynomial at successive points� We illustrate it by a detailed
example� De�ne f�X� � X� �N � where N � �
����	� After sieving f�x� for

values of x near
jp

N
k
� �
��� we accumulate data similar to that in Figure

����

The third� sixth� and seventh columns in the lower table of Figure ��� sum to
zero modulo �� Hence the product

f��

��f������f������ � ��� � � � �	 � ������ � � � ��� � ������ � �	 � �� � ���
� �� � �� � �	� � ��� � ����

gives a square on the right� Take square roots �and recall the de�nition of f�
to derive�

��

� � ���� � ������ � ��� � �� � �	 � ��� � ���� �mod N��

A calculation gives �

� � ���� � ���� � ��
��� �mod N� and �� � �� � �	 � ��� �
�� � ��
��� �mod N�� Unfortunately the congruence ��
���� � ��
����

�mod N� does not help�
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Figure ���� Smooth values of f�X� � X� � �
����	 and associated binary
matrix

������ Multiple Polynomials�

If we sieve the �M values of f�x� for
���x�pN��� �M � then the largest residue is

about �M
p
N �assuming M � p

N�� Montgomery ��� found a way to stunt
this growth as M grows� His variation is called the Multiple Polynomial

Quadratic Sieve� orMPQS�
Let k � � if N � � �mod �� and k � � if N � 	 �mod ��� Find a quadratic

polynomial g�X� � a�X� � bX � c such that b� � �a�c � kN � For example�
when N � �
����	 and k � �� we might pick

g�X� � ���X� � ��	X � 	
�� �����

We discuss how to choose g below� Once g is selected� we sieve to �nd values
of x for which g�x� is smooth� In this case both

g���� � ��� � �	 � �� and g��� � �		 � �� � ��
are smooth� Because

g�X� �



aX �

b

�a

��

� b� � �a�c
�a�

�


aX �

b

�a

��

�mod N��

the square roots of ��� and �		 modulo �
����	 are ������	�
� � ��	���
�
and �����	�
� � ���
�
�� respectively� These can be merged with other data
in Figure ��� to produce squares on both sides� One such product

	
�



�
�

� � �
�� � �
	��


�� � f��

��f��
���g��� � �� � �� � �	� � ��� �mod N�

yields �	����� � 
�	�
�� �mod N�� which factors N �
The polynomial g�X� in ����� can be found by �rst selecting an odd prime

value for a �here ���� We require that kN be a quadratic residue modulo a�
Solve b�� � kN �mod a� for b�� Then solve �b� � �a�� � kN �mod a�� for
�� Set b � b� � �a or b � b� � �a � a�� whichever has the same parity as kN �
De�ne c � �b��kN���a�� By construction� c is an integer and b���a�c � kN �
When sieving over jxj � M�� the values of a� b� c should be picked so that

the values jg��M��j� jg�
�j� and jg�M��j are approximately equal� That is�
the parabola should cross the x�axis twice in the interval ��M�� M�� and the
three extrema should have comparable magnitudes� The solution �subject to
b� � �a�c � kN� is

a� 

p
kN��

M�
� b 
 
� c 
 �M�

p
kN�� �

The largest polynomial value is about jcj� or M�

p
kN��� which is at most

M�

p
N�� � To sieve �M values of x� one can use M�M� di�erent polynomials�

sieving �M� values per polynomial� The largest residual is O�M�

p
N� rather

than O�Mp
N�� Details are in ����

Since values from di�erent polynomials can be combined� the sieving portion
of the MPQS algorithm is easily parallelized� Each processor sieves di�erent
polynomials� and all smooth residues go to a central site� This was used for
the RSA���� factorization mentioned in x����
As in CFRAC� the only primes in the factor base are those for which kN is

a quadratic residue�

���� Large Prime Variations

The sieving procedure in x��
 looks for values of x such that f�x� is smooth with
respect to the factor base� The algorithm is easily modi�ed to also �nd values
of x for which f�x� is a smooth number times a prime not much larger than the
factor base bound� by adjusting the threshold used when inspecting logarithms
after sieving� The extra prime in the factorization of f�x� is called a large
prime� If one �nds two values of x for which f�x� has the same large prime�
then the corresponding congruences can be multiplied together and treated as
a pair for the rest of the algorithm�
This procedure� called the large prime variation� is compatible with the

use of multiple polynomials described in the last section� For example� both
f��
�
� � �����	��	 and g�
� � ����	 have �	 as the only prime exceeding ���
After doing the linear algebra phase� we decide to combine these with three
entries in Figure ��� to get the product

g�
�f��
�
�f��

��f��
�	�f��
���
� ��� � �	� ���� � �	 � �	� ��� � � � �	 � ��� ��� � �� � �	� ��� � � � �	��
� �� � �� � �	� � ��� � �	� � �	��

	
�



This gives the congruence

��	


�
� �
�
 � �

� � �
�	 � �
��

��

� �
�� � �� � �	� � �� � �	 � �	�� �

which simpli�es to ��


�� � �
����� and factors N �
Another variation of MPQS uses two large primes instead of one� this version

is known as PPMPQS� See ����

��	� Number Field Sieve

The Number Field Sieve �NFS� ��� �� uses ideas from algebraic number theory�
It made newspaper headlines in ���
 when it was used to factor the ����digit
cofactor ����� � ��������		 of the ninth Fermat number����
Suppose N is a composite integer to be factored� NFS has four main phases�

Polynomial selection� Select two irreducible univariate polynomials
f�X� and g�X� with �small� integer coe�cients for which there exists an
integer m such that

f�m� � g�m� � 
 �mod N��

The polynomials f and g should not have a common factor over Q� Often
one polynomial is X�m� and the other has the coe�cients of the base�m
expansion of N � for suitable m�

There is no known �good� way to pick these polynomials� unless our
original number has a special algebraic form such as the ������ � �����
shown in x���� For the ninth Fermat number� the polynomials were chosen
to be X � ���� and X� � �� with common root m � �����
Let 	 denote a �complex� root of f and � denote a root of g�
Sieving� This phase �nds pairs �a� b� such that gcd�a� b� � � and such
that both

bdeg�f�f�a�b� and bdeg�g�g�a�b� �����

are smooth with respect to a chosen factor base�

The sieving phase can �x b and search for values of a such that both poly�
nomial functions in ����� are smooth� using the ideas in x��
� Although
we require two values be smooth �rather than one value� as in MPQS��
the values in ����� are su�ciently smaller that we gain overall�

Linear algebra� The expressions in ����� are the norms of the algebraic
numbers a�b	 and a�b�� multiplied by the leading coe�cients of f and
of g� respectively� The principal ideals �a� b	� and �a� b�� factor into
products of prime ideals in the number �elds Q�	� and Q���� respectively�
All prime ideals appearing in these factorizations have small norm �since
the norms are assumed to be smooth�� so only a few di�erent prime ideals

	�




can appear in these factorizations� Use linear algebra to �nd a set S of
indices such that the two products

Y
i�S

��ai � bi	�� and
Y
i�S

��ai � bi��� ����
�

are both squares of products of prime ideals�

Square root� Using the set S in ����
�� try to �nd algebraic numbers
	� � Q�	� and �� � Q��� such that

�	��
�
�
Y
i�S

�ai � bi	� and ����
�
�
Y
i�S

�ai � bi���

Couveignes�s algorithm ��� works if the polynomials f and g have odd
degrees� Montgomery�s square root algorithm ��� allows arbitrary degree�

Let 
� � Q�	� � Z�NZ and 
� � Q��� � Z�NZ be homomorphisms
induced by setting 
��	� � 
���� � m� where m is the common root of
f and g� The congruence


��	
��� � 
�

�
�	���

�
� 
�

�Y
i�S

�ai � bi	�

�

�
Y
i�S

�ai � bim�� 
���
��� �mod N�

has the form ������ the two sides will be coprime to N if none of the
factorizations in ����� share a factor with N �

��	��� Example of NFS�

The �rst step in NFS is polynomial selection� If we somehow observe that

N � �
����	 � �
�	


� ���	 � �� � �
� � ����
then we can choose

f�X� � X� � �� and g�X� � �
X � ���
Both polynomials vanish moduloN whenX � ����
 � �	��	� �mod �
����	��
After sieving and linear algebra� we construct the product

h�X� � ��X � ����X � 	��	X � ���	X � �
�
X � ����X � 	���
X � ��� ������

We claim that ������ gives squares on both sides� More precisely� with 	 �
�
p��� and 
��	� � ����
�

	��



h
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�
�
�
 � ��� � �	� � �	�
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� �




����

����


��

and

h�	� � ��

���� ��	��	�	� �

��
	� � �	���� where

	� � ����� ��		� ��	��


��	
�� �


��
�
	

�
�

�

The factor ��
� divides the numerator of

��
�
	

�
�

� 
����
����


�


�	��
	

����

�

When selecting ������� we included a factor of �� on both sides� The con�
gruence �� � �� is a free relation� much as in x��	� There is also one free
relation for each prime p such that the polynomials f�X� and g�X� both split
completely modulo p� but no such relations were used in �������

�� Improvements in technology

	��� RSA
��� factorization

In a ���� MIT technical memo� which Martin Gardner summarizes in hisMath�

ematical Games column�
�� Rivest et al� challenge the public to factor a ����
digit which they claim is the product of ���digit and �
�digit factors� Rivest
estimates that the required running time� using the best algorithms and ma�
chines available in ����� would be �
 quadrillion years� It took much less time
than predicted� After an ��month worldwide e�ort ��� organized by Derek
Atkins� Michael Gra�� Arjen Lenstra� and Paul Leyland� the factorization was
completed by PPMPQS in April� ����� This e�ort took an estimated 




MIPS years� It found

RSA���� � ���	����
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	��� Factorizations found at CWI

In June� ����� researchers at CWI and in Oregon� USA achieved some record
factorizations using the number �eld sieve�
The �rst was the ����digit Cunningham number N��� � ������ � ������

No factors were known� At Oregon State University �OSU� in USA� Peter
Montgomery et al had sieved this number using NFS with the two polynomials

��X� � � and X � �����

	��



They used about 	
 workstations at OSU over an ��week period during spring
and summer� ���	� The researchers gathered ���� million relations� but were
unable to process the data and �nd the factorization� During ���	������ while
Montgomery was at CWI� the Computational Number Theory group at CWI
completed the linear algebra and square root phases of the work� They found
the factorization N��� � p�� � p��
� where

N��� � �� �����
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The special algebraic form of N��� simpli�ed the polynomial selection phase�
This beat the �
��digit record� which A�K� Lenstra and Dan Bernstein had
previously achieved using NFS�
The OSU team also sieved the following �

�digit cofactor of 	��	 � ��

N��� � �
��
 �
���
���
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���	���
�	 
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����
�� ��
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�� ������	�	� �������
�� 	
	
	

����

Using the data gathered at OSU� the CWI group found N��� � p�� � p��� where
p�� � �
 ����
�
���
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	��� ��	�	

��	�
p�� � 

�� 
	���	����
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��

����� �����
�����

This time the polynomial selection phase was more complicated� The re�
searchers used two quadratic polynomials�

f�X� � 	� ���

���	�X�� �����
 ��			
���� 
��	������X
�
�
�
�
�� �
�������	 
��	�
	��� �����������

g�X� � ��� �
�
�


��X�� ��	
��� �	�������� ����

	���X
��� �������	

 
�
�		�	�� �����
	��� ������
�

�

The resultant of these polynomials is �N���� so they share a common root
modulo N �
The N��� was the �rst large number completed by NFS which did not have

a special form� The record was broken a month later when three researchers
completed a ����digit cofactor of the partition number p�������� using a �fth�
degree polynomial and a linear polynomial� The polynomial selection� sieving�
and linear algebra phases were done by Arjen Lenstra and Bruce Dodson in
the USA� the square root phase was done by Peter Montgomery at CWI�

	�	



For N���� the factor bases had all primes below � million �on small worksta�
tions� or below 	�
 million �on SPARC �
�s�� The program allowed two large
primes up to �

 million on each side� The �sparse� matrix was ���
����		
��
with an average of 	��	 nonzero entries per column�
For N���� the factor bases contained all primes below ��� million and large

primes went to 	
 million� The sieving was performed in such a way that every
relation contained at least one large prime between �
 million and 	
 million�
and could contain �ve large primes� The matrix was �������� ������� with
an average of 	
�� nonzero entries per column
These matrices are larger than any previous matrices arising from integer fac�

torization problems� The N��� matrix would require �

 gigabytes of memory
to store in dense form� which is more than most sites have even on secondary
storage� This prevented the Oregon researchers from �nishing the work� The
CWI researchers used a novel Block Lanczos algorithm ��� for the linear algebra
phase� and completed the larger problem in ��
 hours on a Cray C�
 at the
Academic Computing Center Amsterdam �SARA��
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