A
%CV!Q Quarterly Volume 7 (4) 1994, pp. 337 — 365

A Survey of Modern Integer Factorization Algorithms

Peter L. Montgomery
780 Las Colindas Road
San Rafael, CA 94903-2346 USA.
e-mail: pmontgom@cwi.nl

Every positive integer is expressible as a product of prime numbers, in a
unique way. Although it is easy to prove that this factorization exists, it is
believed very hard to factor an arbitrary integer. We survey the best known
algorithms for this problem, and give some factorizations found at CWI.

1. INTRODUCTION

An integer n > 1 is said to be a prime number (or simply prime) if the only
divisors of m are =1 and +n. There are infinitely many prime numbers, the
first four being 2, 3, 5, and 7. If n > 1 and n is not prime, then n is said to be
composite. The integer 1 is neither prime nor composite.

The Fundamental Theorem of Arithmetic states that every positive integer
can be expressed as a finite (perhaps empty) product of prime numbers, and
that this factorization is unique except for the ordering of the factors. Table
1.1 has some sample factorizations.

1990 =2-5-199| 1995 =3-5-7-19] 2000 = 2% . 53 2005 =5-401
1991 =11-181 | 1996 = 22 - 499 2001 =3-23-29 2006 =2-17-59
1992 = 23 -3-83| 1997 = 1997 2002 =2-7-11-13| 2007 = 32 - 223
1993 = 1993 1998 =2-33.37 | 2003 = 2003 2008 = 23 - 251
1994 = 2 - 997 1999 = 1999 2004 = 22-3-167 | 2009 = 7241

TABLE 1.1. Sample factorizations

The existence of this factorization is an easy consequence of the definition
of prime number and the well-ordering principle. The uniqueness proof is

337

only slightly harder. However this existence proof gives no clue about how
to efficiently find the factors of a large given integer. No polynomial-time
algorithm for solving this problem is known.!

Factoring large integers has fascinated mathematicians for centuries. Gauss
wrote

“The problem of distinguishing prime numbers from composites,
and of resolving composite numbers into their prime factors, is one
of the most important and useful in all of arithmetic. The dignity
of science seems to demand that every aid to the solution of such
an elegant and celebrated problem be zealously cultivated.”

Some books are devoted to tabulating the factors of numbers of special form.
The most referenced such table is the Cunningham table [?], which lists known
factors of b™ £ 1 for bases b < 12 and small n. BRENT ET AL. [?] extend
these tables through b < 99. Some of these factorizations appear in [?], which
also has some factors of ™ + b™. BRILLHART ET AL. [1] give factors of the
Fibonacci numbers and related Lucas numbers. The RSA CHALLENGE [15] is
building a table of factorizations of partition numbers.

Factorization was once primarily of academic interest. It gained in prac-
tical importance after the introduction of the RSA public—key cryptosystem
(see §3.5). The cryptographic strength of RSA depends upon the difficulty of
factoring large numbers.

Let N be a large composite integer. Until the 1960’s, the best algorithms for
factoring N took time O(N€) for some € > 0. One such algorithm is trial divi-
sion, which tries to divide N by all primes up to v/N. This changed when MOR-
RISON and BRILLHART[10] introduced the continued fraction method, whose
time [13] is

exp { (\/5 + 0(1)) (log N loglog N)l/z} -0 (N\/(2+o(1))log log N/ 1ogN) ‘

Modern algorithms for factoring N fall into two major categories. Algo-
rithms in the first category find small prime factors quickly. These include
trial division, Pollard Rho, P+ 1, and the elliptic curve method. Algorithms in
the second category factor a number regardless of the sizes of its prime factors,
but cost much more when applied to larger integers. These algorithms include
continued fraction, quadratic sieve, and number field sieve.

In practice, algorithms in both categories are important. Given a large in-
teger with no clue about the sizes of its prime factors, one typically tries algo-
rithms in the first category until the cofactor (i.e., the quotient after dividing
by known prime factors) of the original number is sufficiently small. Then one
tries an algorithm in the second category if the cofactor is not itself prime. If

L An algorithm is said to be polynomial—time if its worst case execution time is bounded
by a polynomial function of the length of the input. If one wants to factor N, whose length is
O(log N), then an O((log N)°) algorithm would be polynomial-time, whereas an O(N0-1)
algorithm is not.

338

one is unable to find a sufficiently small cofactor (or a prime cofactor) using
methods in the first category, the factorization remains incomplete.

The interpretation of “sufficiently small” has changed considerably as tech-
nology has progressed. In the 1960’s, JOHN BRILLHART and JOHN SELFRIDGE
[?, p.87] predicted that factoring numbers over 25 digits would be hard. In
the 1970’s, RICHARD GUY [?, p.82] predicted that few numbers over 80 digits
would be factored. In 1994 the cutoff is around 100-120 digits.

We illustrate some algorithms using N = 1098413 = 563 -1951. This number
was selected using CWTI’s street address.

WILLIAMS and SHALLIT [20] give a computational history of factoring (and
primality testing) from 1750 to 1950, i.e., before the era of electronic computers.
RICHARD GUY [?] gives a good survey of factorization methods known in 1975.
BRILLHART ET AL. [?] give a chronology of developments in factorization, both
hardware and software, esp. the methods used by the Cunningham project.
ROBERT SILVERMAN [17] gives a more recent exposition. Several textbooks
[?7, 7,72, 7] cover factorization.

We review some elementary number theory. We review some fundamental
algorithms which will be needed later.

2. NOTATIONS
The symbols (), R, and Z denote the sets of rational numbers, real numbers,
and integers, respectively.
If z and y are integers, then 2 | y (read: z divides y) means that y is a
multiple of z. That is, | y if and only if there exists k € Z such that y = k.
The greatest common divisor (GCD) of two integers z and y is denoted
ged(z, y). The GCD is always positive unless z = y = 0. If ged(z, y) = 1, then
x and y are said to be coprime: they have no common divisors except £1.

3. REVIEW OF ELEMENTARY NUMBER THEORY
This section reviews some elementary and analytic number theory. Proofs can
be found in many number theory textbooks.

3.1. Congruence classes and modular arithmetic
Fix n > 0. Two integers z and y are said to be congruent modulo n if z —y
is divisible by n. This is written

z=y (mod n).

For fixed n, the = relation is an equivalence relation (reflexive, symmetric,
transitive). The equivalence classes are called congruence classes. A set with
exactly one representative from each congruence class is called a complete
residue system. There are exactly n congruence classes. The canonical
complete residue system is {0, 1, 2, ---, n — 1}.

We omit the modulus n, writing simply = y, when the modulus is clear
from the context.

The = relation is preserved under addition, subtraction, and multiplication.
If 1, x2, y1, y2, and n are integers such that

339

z1 =y1 (mod n) and zo =y (mod n),

then
T+ T2 =Y + Y2 (mod n),
T — Ty =Y — Y2 (mod n), (3.1)
T1T2 = Y192 (mod n).

These are easily proved using the definition of =. For example, z1z5 — y1y2 =
(1 —y1)x2 + y1(@2 — y2) is a sum of two multiples of n.

Equation (3.1) says that it is meaningful to add, subtract or multiply two
congruence classes, since the equivalence class of the result does not depend
upon the selections of the representatives. The congruence classes modulo n
form a commutative ring under these operations. This ring, denoted by Z /nZ,
is called integers modulo n. When n is prime, division by nonzero elements
is possible, and this ring is a field, often written GF(n).

A corollary to (3.1) is that if f is a polynomial in k variables with integer
coefficients, and if z; = y; (mod n) for 1 <14 < k, then

f@y, o, -, ar) = f(y1, 2, -+, yx) (mod n).

Occasionally we write r;y = ro where r; and 7y are rational numbers rather
than integers. The notation a;/b; = az/bs (mod n) means that the numera-
tor of a; /by — ag/be is divisible by n and that its denominator is coprime to n.
That is, ajbe = azby (mod n) and ged(b1bg, n) = 1.

3.2. Properties of prime numbers
Let p be a prime number. The following properties are stated without proof:

e If v,y € Z, and p | zy, then p | or p | y. Equivalently, if zy = 0
(mod p), then 2 =0 (mod p) or y =0 (mod p).

e Unique factorization. As previously mentioned, every positive integer can
be written as a (perhaps empty) product of primes, and this representa-
tion is unique except for ordering. See Table 1.1 for some examples.

e The polynomials (X 4+ Y)? and X? + Y? are congruent modulo p. For
example, every term in

(X +Y) - X% Y5 =5X*Y +10X3Y? + 10X?Y? + 5XY*

is divisible by 5. This can be proved using the binomial theorem.

e (Fermat’s little theorem). If a € Z, then a? =a (mod p). In particular,
if p does not divide a, then a?"! =1 (mod p). One proof uses the last
property and induction on a.

3.3. Chinese remainder theorem
Let n; and ny be coprime positive integers. If r; and r are arbitrary integers,
then the two congruences

340

z=7 (modnq) and =7y (mod ny) (3.3)
may be replaced by a single congruence
z=r (mod ning), (3.4)

where 7 is chosen to satisfy » =r; (mod ny) and r = ry (mod ng). This is
known as the Chinese Remainder Theorem.
For example, the two congruences

z=3 (mod 13) and z=9 (mod 17) (3.5)

are equivalent to the single congruence # = 94 (mod 221). To confirm this,
note first that 1 = 52 — 51 = 4-13 — 3 - 17; such an equation exists since 13
and 17 are coprime (cf. (4.1)). If (3.5) holds, then there exist integers k; and
ko such that x = 13k; + 3 = 17ks + 9. Hence

¢ =52z — 51z = 52(17ky +9) — 51(13k; + 3)
= 884ky — 663k; + 315 = 221(4ky — 3k; + 1) + 94,

which shows that © =94 (mod 221). Conversely, if = 94 (mod 221), say
x = 221k + 94, then z = 13(17k + 7) + 3 = 17(13k + 5) + 9, implying (3.5).

A generalization allows more than two moduli. If ged(n;, nj) =1 for 1 <
i < j <k (i.e., if the integers ny, - -+, ny are pairwise coprime), and if r; € Z
for all 7, then the system of congruences

z=r; (mod n;) (1<i<k)
is equivalent to a single congruence
z=7r (modmning---ng), (3.6)

when r is suitably chosen. There are efficient ways to find this 7 given the {n;}
and {r;}.

When we know an upper bound on an integer z, then we can determine
z uniquely if we know it modulo enough primes. More precisely, if we know
that |z] < B, and if we choose ning - ng > 2B + 1, then (3.6) determines z
uniquely.

3.4. Smooth numbers
An integer n is said to be smooth with respect to a bound B if no prime
factor of n exceeds B. In Table 1.1, the numbers 1995, 2000, 2001, and 2002
are smooth with respect to 30.

For fixed B and = > B, the number of positive integers less than z and
smooth with respect to B is approximately zu~", where v = Inz/In B [13,
p.94].

341

3.5. Density of prime numbers
The Prime Number Theorem states the asymptotic density of primes. Let
m(z) denote the number of primes not exceeding the real number z. Then

=1. (3.7)

In other words, 7(z) is approximately z/In(z) for large z.

A numerical example is z = 1000. Then 7(1000) = 168 whereas 1000/ 1n(1000)
~ 144.76.

A more accurate approximation is #/(lnx — 1). This predicts 169.27 primes
below 1000.

RIESEL [?, Chapter 1] gives some history about accurate computation of 7(x)
for large .

4. SOME ESSENTIAL ALGORITHMS
We will assume that the reader is familiar with the following important algo-
rithms:

Multiple-precision arithmetic[?, §4.2]. Two integers of magnitude at
most N can be added, subtracted, or compared in time O(log N), by
operating on one digit at a time. The classical multiplication and divi-
sion algorithms take time O((log N)?). A corollary is that addition and
subtraction modulo N can be done in time O(log V), if the operands and
result are required to be in the interval [0, N —1]. Modular multiplication
can be done in time O((log N)?).

Modular exponentiation [?, pp.441ff.]. If e is a nonnegative integer
and 0 < a < N then the remainder a® mod N can be computed with
O(loge) multiplications modulo N, and hence in time O((log N)? loge),
using the binary method of exponentiation.

Greatest common divisor[?, pp.316ff.]. If n; and ny are positive in-
tegers, then their greatest common divisor can be found in O(log(min(n,
ny))) operations on integers at most max(ni, ny). The extended GCD
algorithm also finds two integers mi, my such that

ged(ny, na) = ming + mana, Im1| < |nal, |ma| <|ni|. (4.1)

5. RSA PUBLIC-KEY CRYPTOSYSTEM
The RSA cryptosystem (named after its inventors RIVEST, SHAMIR, and ADLE-
MAN) [?] is the first public—key system introduced, and remains the most used
public—key cryptosystem today. The strength of this cryptosystem depends
upon the difficulty of factoring large integers.

A publickey cryptosystem requires each user to have his own encryption
procedure F and private decryption procedure D. Everyone’s FE is known to

342

all other users, like a city telephone directory. Only the user knows his D.
These procedures must be bijections and inverses of each other: D(E(M)) =
E(D(M)) = M for all messages M. Both D and E must be cheap to execute,
but it must be computationally infeasible to find D given only E.

RSA achieves these objectives by letting each user pick two large primes p
and ¢ with p # ¢q. Let N = pq. Choose two exponents e, d with de = 1
(mod (p — 1)(q — 1)). If M is an integer, then Fermat’s little theorem implies
M = M (mod p) and M = M (mod q); hence M = M (mod N)
for all M. Let the message space be the interval [0, N — 1] (a long message
can be split into chunks). Define the encryption and decryption procedures by
E(M)= M¢ (mod N) and D(M) = M? (mod N). The values of e and N
are public, but d, p, q are private.

These satisfy all of the public—key requirements except possibly the require-
ment that it be hard to find D given E. If factoring is easy, then an intruder
can find p and ¢ given N = pg; from this the intruder can find (p — 1)(g — 1)
and hence d since he knows e. That is, it is easy to find D given F if factoring
is easy. The converse is unknown: nobody has proven that factoring is easy
if one can easily find D given E. However, the problems are believed to be
equivalent.

A 1992 report [?, p. 81] recommends that any RSA public—key modulus (i.e.,
the product N = pq) be at least 1024 bits (about 309 decimal digits) if the
data must remain secure for 10 years, but does not make a recommendation
for longer periods.

6. ALGORITHMS FOR FINDING SMALL PRIME FACTORS OF LARGE NUMBERS
6.1. Trial division

If N is composite, then at least one prime divisor of N is at most vN. To
factor IV, the trial division algorithm successively divides NV by primes 2, 3, 5,
..., up to [V/N].

If p is the second largest prime factor of an integer N, then trial division
takes O(p) steps (or O(p/lnp) steps if one does trial division only by primes
— see §3.5).

Almost all factoring programs attempt trial division by the smallest primes.
Even if N is 1000 decimal digits long, it takes only a few seconds to divide N
by all primes up to 107.

Sometimes the prime divisors of N are known to have a special form. For
example, if p | a® — 1 but p { a* — 1 for any k where k < n and k | n, then
p =1 (mod n). This information facilitates trial division, since it restricts
the range of possible divisors. For such numbers, one might try trial division
by all qualifying primes below 232 or even higher. Unless N has a special form,
trial division is impractical for finding prime divisors above 10°.

6.2. Pollard Rho
In 1974 and 1975, John Pollard announced two new algorithms for finding
small factors of large integers. Each algorithm does a sequence of polynomial

343

operations (additions, subtractions, multiplications) in such a way that inter-
mediate results are highly composite but nonzero. Suppose IV is a number to
be factored and p | N. If r is one of the intermediate results and p | r, then
p | ged(r, N); we hope that this GCD does not equal N itself.

The Pollard Rho algorithm [12] iterates a function. Let f € Z[X] be a

univariate polynomial with integer coefficients. Select zy arbitrarily and define

tnir = f(@a) (0> 0). (6.1)

If p is prime, then the sequence {z, mod p},>o must eventually repeat, say
Tp, = Tn, (mod p) where 0 < n; < ma. Since f is a polynomial function,
this and (3.2) imply @n, 4% = @Tn,+& (mod p) for all & > 0. That is, the
sequence {z,, mod p},>¢ is eventually periodic, with period dividing ny — ns.
If n > ny and (n2 — ny) | n, then 29, =z, (mod p). This is the idea behind
one variation of Pollard Rho: test ged(zg, — @, N) forn =1, 2, --- until it is
non—trivial (success) or until n is too large (failure).

0—-1—-2—>5—26— 114 — 48

AN N (mod 563)
558 «— 53

FIGURE 6.1. Pollard Rho cycle modulo 563 using f(X) = X2+ 1 and x5 = 0

Figure 6.1 shows the pattern modulo 563. The first repetition is g = x4 = 26
(mod 563). Since f is a polynomial with integer coefficients, the sequence has
period 5 except for its first few terms: @p45 = @, (mod 563) whenever n > 4.
In particular, z19 = z5 (mod 563).

When attempting to factor NV = 1098413 this way, the actual computations
are modulo N = 563 - 1951, but we visualize them as being done separately
modulo the (unknown) prime factors of N. This abstraction is justified by the
Chinese Remainder Theorem. Figure 6.2 outlines the sequence of computations
(all congruences are modulo 1098413).

n Ton_1 Ton Ty ged(zon — p, N)
1 T = 1 Ty = 2 T = 1 1
2 T3 = 5 Ty = 26 Ty = 2 1
4 | 27 = 394716 | 25 = 722324 | 24 = 26 1

FIGURE 6.2. Factorization of 1098413 via Pollard Rho

The cycle length is considerably longer modulo 1951, for which the first
duplicate is z55 = @14 = 695 (mod 1951). The factor 1951 would be found

344

while testing ged(zge — z41, N), but 563 is found first, while testing ged(z19 —
Zs5, N)

6.2.1. Complexity of Pollard Rho.
By (3.2), the polynomial operations required by Pollard Rho can all be done
modulo N, after which one checks ged(r mod N, N) rather than ged(r, N).
This procedure ensures that the intermediate results do not grow too big, and
is reflected in the data shown in Figure 6.2.

If p is a prime dividing IV, then Pollard Rho appears to take O(,/p) iterations
to find p. Given z,_1 and xs,_o, the n—th iteration computes

Zy = f(n—1) (mod N) and Zon = f(f(22n—2)) (mod N)

and tests ged(zon — o, N). If f(X) = X2 + 1, then this is three modu-
lar multiplications, four modular additions (subtractions are counted as addi-
tions), and one GCD operation per iteration. If p = O(v/N), then the time
is O(/p(log N)?) = O(N*/*(log N)?) bit operations. This is asymptotically
better than the O(p) = O(N'/?) divisions needed by trial division.

It is possible to trade most of the GCDs with N for multiplications modulo N.
As stated, the algorithm tests each ged(zon, —x,, N). We anticipate that most
GCDs will be trivial (otherwise we’ve found a factor). We can replace two

GCD tests

ged(r, N) and ged(s, N) (6.2)
by a single test

ged(rs mod N, N). (6.3).

The GCD in (6.3) will be non—trivial if and only if at least one GCD in (6.2)
is non—trivial. If rs is coprime to IV, then both r and s must be coprime to IV;
we trade the two GCDs in (6.2) for one modular multiplication and the one
GCD in (6.3). Conversely, if rs shares a factor with IV, then at least one GCD
in (6.2) must be non—trivial; the latter event is sufficiently rare that we can
afford to test both GCDs in case they yield separate factors of N. In practice,
one takes the product of several x5, — z,, before doing a GCD with N.

BRENT [?] proposes testing ged(2,, — @, N) whenever n is a power of 2
and 3n/2 < m < 2n instead of testing values of gcd(wo, — @pn, N). Brent’s
variation would find the prime 593 while testing ged(z13 — g, V) rather than
ged(w1p—ws, N), and would find the prime 1951 while testing ged(z105—264, N)
rather than ged(zga — @41, V). Brent’s variation takes about twice as many
iterations, but it is about 24% faster overall because each iteration applies the
polynomial f once rather than three times. BRENT and POLLARD [?] used
this to find the 16—digit prime factor 123892 6361552897 of the 78—digit Fermat
number 2256 + 1,

345

6.3. P—1

Soon after discovering Pollard Rho, John Pollard found another method which
finds small prime factors. His new method, called the P—1 method [11], finds
a prime factor p of N if p — 1 is smooth. In the worst case, when (p —1)/2 is
prime, the P — 1 method can require O(p) arithmetic operations to find p, as
in trial division. But some prime divisors are found very quickly.

The P — 1 method is based on Fermat’s little theorem (§3.2). Suppose M
is such that (p — 1) | M. If ged(a, N) = 1, then a™ = (mod p), implying
p| ged(a™ — 1, N). For example, if M = 420 = 22-3-5-7, then this will find
p if p is among

2, 3,5, 7, 11, 13, 29, 31, 43, 61, 71, 211.

Eleven of the 25 primes below 100 are in this list. If we replace 420 by 11!
(say), then we will also find 17, 19, 23, 37, 41, 67, 73, 89, 97, and many larger
primes.

The value of M is typically the product of small primes or prime powers. If
M is the product of all prime powers below a bound B, then M = exp(B), so
the binary method of exponentiation needs O(log M) = O(B) multiplications
modulo N to compute ™ mod N. After one GCD operation, we hope to
discover p.

For example, suppose N = 1098413 and B = 30. Figure 6.3 summarizes the
computations if we begin with 2; = a = 2, and let z; denote our intermediate
result after processing a power of the prime ¢. In this example, we choose to
check each gcd(zgy — 1, N) rather than only the final ged(z29 — 1, N). We can
stop early when we find the factor 1951 of ;3 — 1.

ry, = 2

zo =% = 65536 | ged(zy — 1, 1098413) = 1

x3 = 37 = 734876 | ged(wr3 — 1, 1098413) = 1

x5 = 22° = 639082 | ged(zs — 1, 1098413) =1

z7 =zl = 648217 | ged(zr — 1, 1098413) =1
w1 = o+t = 353244 | ged(wy; — 1, 1098413) = 1
T3 = z13 = 304357 | ged(z13 — 1, 1098413) = 1951

FIGURE 6.3. Factoring 1098413 via P — 1 with ; =2 and B; = 30

The factor 1951 is found since 1951 — 1 = 2-3-52 - 13 is a product of prime
powers dividing 16 - 27-25-7-11-13. On the other hand 563 — 1 = 2 - 281 is
not of this form. Observe that the P — 1 method finds 1951 first whereas trial
division and Pollard Rho find 563 first. The smallest prime factor of a number
is not always the easiest factor to find.

346

6.4. Step 2.

A modification to the P — 1 method (called Step 2) allows p — 1 to have
one prime divisor exceeding B, if that prime divisor is not too big [?, 7, ?].
Specifically, suppose p is a prime divisor of N and

p—1l=m-q where m | M.
If gcd(a, N) =1 and A=a™ (mod N), then Fermat’s theorem implies

1M/m =1 (mod p).

Al = (aM)q =M1 = (amq)M/m = (apfl)M/m

That is, the prime p will divide ged(A? — 1, N).

If g is not too large, then we can find p, using the output A from Step 1. The
idea [?] is to test several gcd(A™ — A", N) where n; # no; this will reveal p
if ¢ | (ny — ny). If we want to test all primes ¢ < B’ for some B’, then we can
use two tables of size O(v/B'), one containing all values of A™ mod N and
another all values of A™2 mod N. Each entry in one table is compared to each
entry in the other. Variations work for the P + 1 and elliptic curve methods,
which are covered in the next two sections.

Example factors found by P —1 at CWI (with B = 30 million) are the factor
pss of 8598 11 and the factor psg of 7181 4+ 1, where

p3s = 11246 3189495079 4641128208 4363679513,

p3s = 296390 4308479769 5878152861 5585508917,
p3s —1=2%.7-172. 11177 - 327881 - 628997 - 1409467 - 213884611,
p3g — 1 =22.35.283-739 5347 - 7699 - 37589 - 24474559 - 38498773.

These factors appear in the update to [?].

6.5. P+1

The P — 1 method finds a factor p of NV if p — 1 is sufficiently smooth. The
method has found many factors, but fails miserably if p — 1 has a very large
factor, such as if p — 1 = 2¢q for some prime q.

In 1982, HuGH WILLIAMS [19] published a method which works when p+ 1
(rather than p — 1) is smooth. Williams’s method, called the P + 1 method,
operates in the finite field GF(p?) having p? elements and characteristic p.

Let P be an integer and assume that P? — 4 is is a quadratic non-residue
(i.e., not a square) modulo p. Denote f(X) = X2 — PX + 1. This quadratic
has two roots a and a~! over GF(p?), which satisfy a + a=! = P. Because
PP =P (mod p), one root of f is aP:

fla?)=a* —Pa? +1=(a? = Pa+1)? = f(a)’ =0 in GF(p?).

Since f has only two roots, either a? = a or a? = a~'. If o? = qa, then

a € GF(p), and

P2—4:(a+a71)2—4:(oz—ofl)z.

347

This is impossible since @ — a=! € GF(p) and P? — 4 is assumed to be a
quadratic non-residue modulo p. Therefore a? = a~!, implying P! = 1.

The P — 1 method selects a in the multiplicative group GF(p)* of order
p — 1, and finds p if this order is smooth. The P + 1 method is structurally
similar to P — 1, but takes powers of a € GF(p?) and succeeds if the order of
a is smooth. One way to do the arithmetic observes that o and 1 is a basis
for GF(p?) over GF(p), and uses arithmetic modulo N in place of arithmetic
modulo the (unknown) prime p. This can be improved considerably by using
Lucas functions to manipulate values of a® + o~ ¢ rather than a® [19].

There is no known way to check beforehand whether P2 —4 is a non-residue
without knowing p. If one runs the method three times using three values for P,
then there is an 87.5% chance that at least one of the values for P2 — 4 will be
a quadratic non-residue. When P2 —4 is a quadratic residue, then a € GF(p),
and the P 4+ 1 method becomes an expensive variant of the P — 1 method.

One factor found by P+ 1 at CWI (with B = 30 million) is the factor ps7 of
45123 4+ 1, where

p37 = 4190453 1519402086 5671558238 2315221647,
p3r +1=2%.283.2423 - 21881 - 39839 - 1414261 - 2337233 - 132554351.

6.6. Elliptic Curve Method
The P £ 1 methods find a factor p of N if either p £ 1 is sufficiently smooth.
However they fail if both p — 1 and p + 1 have large prime factors. This
happens frequently; for example, both (p — 1)/4 and (p + 1)/6 are primes for
p = 29,173,317, 653, 893. In 1985, HENDRIK LENSTRA, Jr.[?] overcame
this difficulty when he announced a similar method called the Elliptic Curve
Method, abbreviated ECM.

An elliptic curve over a field K of characteristic not 2 is the set of solutions
(z,y) € K x K to a cubic equation

Y2 =X*+AX?+BX +C, (6.4)

together with a special point (conceptually (oo, 00)) called the point at in-
finity. There is one restriction to the coefficients in (6.4): the discriminant of
the cubic polynomial must be nonzero, i.e.,

—4A3C 4+ A’B? + 18ABC — 4B® — 27C? # 0.

The points on an elliptic curve form an abelian group E(K) when the group
operations are suitably defined, as illustrated in Figure 6.4. The negation of
the point at infinity is itself; the negation of any other point P, = (z1, y1) is
defined to be —P; = («1, —y1). For addition, suppose that P; and Py are two
points on the elliptic curve. If either P, or P, is the point at infinity, then
define P; + P, to be the other point. Otherwise suppose P, = (z1, y1) and
Py, = (z2, y2). If 1 # x5, then define P, + P, = —P3, where Pj is the point
where the straight line through P; and P, re-intersects (6.4). A calculation
gives

348

Yy2—n
xy — 1’
P3 = (w3, y3), where z3 =m? — A —z; — 2, (6.5)
Y3 = y1 +m(zz — x1).

When instead #; = 9, then y? = y2 by (6.4). If yy = —yo, then define

P, + P; to be the point at infinity. If y; # yo (so that y; = —y2 # 0),

then define P, + P, = —P3, with P3 defined as in (6.5), except that we use
= (322 + 2Az; + B)/2y; (slope of tangent line at P, = Py).

It is amazing that this + defines an associative operation. All group oper-
ations are defined in terms of ordinary addition, subtraction, multiplication,
division, and comparison (no square roots), and are meaningful over arbitrary
fields where 2 # 0. In particular, they are meaningful if K = GF(p), where p
is an odd prime. The resulting elliptic curve group E(GF(p)) is finite; HASSE
[16, p. 131] showed that its order is p + 1 — 7 where |7| < 2,/p. By changing
the constants in (6.4), we get another curve, whose order is usually different.

If N is composite, say N = pq where p and ¢ are distinct odd primes, then
the ring Z /NZ is not a field, but we can use (6.4) to define a curve and attempt
to use the algebraic rules to do group operations modulo N. We will fail (i.e.,
be unable to execute the algebraic operations) only if we attempt to divide by
a nonzero, non—invertible number modulo N [?]. Such a denominator (called a
zero divisor) will be divisible by p or ¢ but not both, and will give us a factor

of N.

For example, suppose N = 1098413. We might choose
E:Y?=X®-X+41 and Py=(0,1).

It turns out that |E(GF(563))| = 560 = 2* -5 -7 and |E(GF(1951))| = 1948 =
22 . 487. If we attempt to compute 560P, (or any multiple thereof), then we
will strike the identity element of the group modulo 563, but probably not
modulo 1951. This will cause us to attempt to divide by a nonzero multiple
of 563, and the factor 563 will be found. Indeed, if we work modulo 1098413,
then

640F, = (289957, 901426).

Py =(0, 1),
2Py = (823810 411904),
4Py = (351660, 356515),
8Py = (1009192, 539351),
16 Py = (1097285, 905229),
32P, = (258049, 365818),
64P, = (759179, 793734),
80Py = 64P) + 16 P, = (590036, 204995),
160P, = (196136, 560546),
320P, = (252057, 444662),
()

Next we attempt to compute

349

toP—Q [

3
2P+ Q

++ + +

A~ N N~
— = D~

===}

T —

LOOS
++ 7
Q

~ &

P+ (

FIGURE 6.4. Group law on y? = 23 — 42 + 1

350

560P) = 640P, — 80P, = (289957, 901426) + (590036, —204995).
The z—coordinates 289957 and 590036 are distinct, but their difference
590036 — 289957 = 300079 = 13 - 41 - 563

is not invertible modulo N = 563 - 1951. A GCD finds the factor 563.
One early number done by ECM is the 843-rd Fibonacci number Fgy3. Its
algebraic cofactor has five prime factors, namely

F843 —
2Fhe, P12 - P13 * P15 " P16 * P63,
where
P12 = 46 6269593837, pi12 — 1= 22 .3067 - 38006977,
pi2+1=2-3-41-71-281-95003,
P13 = 257 6582465657, pi1z — 1 ::23-10957-2939425L

pi3+1=2-3.281-1279 1194857,
pis = 818303948755277, pis — 1 = 22 - 20457 5987188819,

pis+1=2-3.53.281- 75712097213,
Prs = 238537 7797192381, pig — 1 = 22-33 .5 281 - 3191 - 4926407,

pi6+1=2-193-1579 - 7841 - 499133,

and pgs is a 63—digit prime. The P — 1 method (with B = 20000 and a Step 2
bound of 10%) missed all four small factors, although the method finds many
others with these sizes. A two—step P + 1 algorithm found p;g; however, it
missed pia because the chosen value of P? — 4 was a quadratic residue mod-

ulo p12. ECM found all four small prime factors easily.
One ECM factor found by CWI [9] is the 40-digit factor

1549314255 0620385697 1990677659 9544873717

of 26'26 4 1. The job was run on the CRAY C90 at SARA, using 128 curves.
The 102—nd curve had very smooth order:

29.3.1069 - 1117 - 11681 - 14771 - 55171 - 142501 - 154303 - 4035751.
The largest factor found by ECM is the 43—digit factor
568 8864305048 6537027917 5240510704 4435136231

of the partition number p(19997). It was found by Franz—Dieter Berger, Uni-
versity of Saarland (Germany), in 1993.

7. ALGORITHMS FOR FACTORING ARBITRARY INTEGERS
The next several algorithms try to factor an odd integer N by finding two
squares X2 and Y2 such that

X?=Y? (mod N) and ged(XY, N) = 1. (7.1)

351

Then they test ged(X — Y, N), hoping for a non—trivial factor of N. Whereas
the algorithms in §6 require time depending primarily on p to find the smallest
prime factor p of N, the times for the upcoming algorithms depend primarily
on the size of N itself.

If N has two distinct odd prime factors p; and po, and if X and Y are randomly
selected subject to (7.1) then ged(X —Y, N) will be non—trivial (i.e., neither 1
nor N) exactly 50% of the time. Indeed, choose Z such that Z =1 (mod p;)
and Z = —1 (mod py); this Z exists by the Chinese remainder theorem.
Then, given X, the solutions Y of X2 =Y? (mod N)areY = X,Y = —X,
Y =XZ, and Y = —XZ. The corresponding values of gcd(X — Y, N) are
N, 1, p; and po, respectively. Two of these four are non—trivial. If N has k
distinct odd prime factors, then the probability of success with a single (X, Y)
pair is 1 — 217F,

These methods don’t work if N is a prime power (i.e., if N doesn’t have two
distinct prime factors), but this condition is easily checked. If N = p* where
p is prime and k£ > 1, then N — 1 = p* — 1 is divisible by p — 1. By Fermat’s
little theorem, if ged(a, N) = 1, then

aN-1 = (apfl)(N_l)/(P_l) = ((N-1)/(p-1) = (mod p).

Consequently ged(a™~1 — 1, N) will be divisible by p. If instead we find an a
such that gcd(a” —a, N) = 1, then n cannot be a prime power.

7.1. Finding squares through products
The best methods for constructing congruences of the form (7.1) start by ac-
cumulating several congruences

where each A; and each B; is either a square or a square times a smooth
number. These congruences are also called relations. For N = 1098413, a
sample relation is

1100000 = 1587 (mod N),

in which all prime divisors of 1100000 = 25 - 55 - 11 and of 1587 = 3 - 232 are
under 30.

The algorithms vary in how they find the relations (7.2). Once sufficiently
many relations are found, each algorithm attempts to find a non—empty set S
of indices such that both

[[4 anda]B: (7.3)

i€S i€S

are squares. The product of the corresponding congruences is a congruence of

the form (7.1).

352

We illustrate with a small example, using NV = 77 = 7 - 11. The left side of
Figure 7.1 lists some congruences modulo 77, in which the only prime factors
of each side are 2, 3, 5. We deliberately suppress the congruences 81 = 4
and 256 = 25, where both sides are squares, since either of these factors 77
immediately.

E— 45 50 72 75 80 125 320 384
so= _o7| [P=2 0 1 3 0 4 0 6 7
o= x| |p=3 2 0 2 1 0 0 0 1
= o |P=5 1 2 0 2 1 3 1 0
o= 3| |p=-1 1 1 1 1 0 0 o0 1
5= 4| |P=2 5 0 0 1 0 4 0 0
30— o43| |P=3 o 3 0 0 1 1 5 0
ssiz 1| |p=3 O 0 1 0 0 0 0 0
—32 —27 -5 -2 3 48 243 -1

FIGURE 7.1. Some congruences mod 77, involving powers of 2, 3, 5

We now multiply some of these congruences so as to generate squares on
both sides. For example, 80 - 320 = 3 - 243 becomes 20 - 52 = 35. Rewrite
this as 1602 = 272. This congruence factors 77, since gcd(160 — 27, 77) =
ged(133,77) =17.

We might instead have chosen to multiply 125 = 48 by 320 = 243. This gives
2651 =21.35 which is the same as 200? = 1082. Since gcd (200 — 108, 77) =
ged(92, 77) = 1, this congruence does not yield a factorization.

The decision to multiply 80 = 3 by 320 = 243, or 125 = 48 by 320 = 243, is
made by looking at the exponents of the primes in the resulting product. All
exponents in 210 .52 = 35 and in 26 . 5% = 2% .35 are even. There are eight
congruences in Figure 7.1; let the exponents e; to eg be one or zero, depending
upon whether the corresponding congruence is included in or excluded from
the product. The product congruence

45°1 . 50°2 - 720 . 75 . 80% - 125° - 320°7 - 384°
(7.4)
= (—32)%1 - (=27)° - (=5)% - (—2)% - 3% . 48°% . 243°7 . (—1)**

factors into

262+363+465+667+7Es . 3261+263+64+Es A 561+262+264+65+366+67
= (_1)e1+62+63+64+63 A 2561+E4+466 . 3362+65+66+5E7 . 5es

Both sides will be squares precisely when all exponents are even. This is equiv-
alent to requiring that all elements of the matrix—vector product

353

(0011000 0 1] eﬂ
000710001 €2
10001110 €
11110001 e (7.5)
10010000 €
01001110 €6
00100000 67J
L Il e

be even.

Equation (7.5) has the form Be = 0 (mod 2), where e is the exponent
vector and B is the 7 x 8 exponent matrix hidden in the right of Figure 7.1
but reduced modulo 2. The eight column vectors must be linearly dependent
since all are in a space of dimension at most 7. This is equivalent to saying
that there exists a nonzero e € GF(2)® such that Be = 0.

In this example, the fifth, sixth, and seventh columns of B are all [0, 0, 1, 0, 0,

1, O]T. Any two of these sum to zero modulo 2. This corresponds to multiply-
ing two of the three congruences 80 = 3, 125 = 48, and 320 = 243, as we did
earlier.

Another vector in the null space of Bis [1,1,0, 1,0, 0, 1, 1]T. The congru-
ence

45-50-75-320- 384 = (—32) - (—27) - (=2) - 243- (1) (mod 77)

becomes 144000% = 6482 (mod 77), which again gives the factorization 77 =
7-11.

Traditionally, one solved the system Be = 0 by a variation of Gaussian
elimination. Recently some iterative methods [2, 3, 7, 18] have been found. The
iterative methods are superior when the matrix is large, since they require less
storage (matrices arising from integer factorization problems are very sparse).
For these large, sparse, matrices, the iterative methods are also faster — if B is
an n X n matrix, then Gaussian elimination uses O(n?) bit operations but the
iterative methods take O(n) applications of the matrix B, which is time O(n?)
if the number of nonzero entries per column remains bounded as n grows.

7.2. Factor base

The set of primes appearing in the factorizations in Figure 7.1 is called the
factor base. Often it is convenient to also include —1 in the factor base. If we
allow primes below B to appear, then the size of the factor base is about 7(B)
(see §3.5 for estimates of 7(B)).

7.8. Free relations
In the last example, while factoring 77 with a factor base of {—1, 2, 3, 5}, we
could have used the four trivial congruences

2=2, 3=3, 5=5 (7.6)

354

in the product (7.4). For example, although 50 - 75 and (—27) - (—2) are not
squares, the congruence

2.3.50-75=2-3-(=27)-(=2) (mod 77)

yields 150? = 182 (mod 77) and a factorization. The congruences in (7.6) are
called free relations, because the effort required to find the relations does not
depend on the size of N.

In this example, which uses the factor base {—1, 2, 3, 5} on both sides, we
could dispense with the free relations and use the factorizations (including neg-
ative exponents) of the quotients —45/32, —50/27, - - - directly. Each rational
quotient is congruent to 1, and the resulting matrix will be smaller since each
prime appears only once (not once per side). The Number Field Sieve (§7.8)
uses free relations which are more complicated than those shown here, and in
which the two factor bases are different, so this simplification does not work
there.

7.4. Continued fraction method

The continued fraction method (abbreviated CFRAC) is no longer in contention
as a modern factoring method, but we include it because it is similar to some
modern methods and easier to understand. It was used to factor the seventh
Fermat number (39 digits) in 1970 [10, p. 184]:

2128 11 = 5964958 9127497217 - 57 0468920068 5129054721.

CFRAC looks for congruences X? = r (mod N) with small » (specifically
r = O(VN)). For each congruence it finds, it attempts to factor r using the
factor base. Where r is smooth, the congruence is saved so it can be multiplied
by other such congruences to form squares on both sides.

If N is a perfect square, then it is easy to factor N. Otherwise v/N is
irrational. There exist infinitely many rational approximations P/Q of VN
such that

P 1
a—m‘<@.

If P/Q is any such approximation and we choose € such that P/Q = v/ N +¢/Q?,
then

P2 NQ? = (Q\/N+ e/Q)2 ~NQ? = 2¢V'N + /@2

Since |¢| < 1, this shows that |[P? — NQ?| < 2v/N +1/Q?. Hence all such values
of P2 — NQ? are O(v/N), as desired. We know a square root of P? — NQ?
modulo N, namely P.

As an example, with N = 1098413, the first 15 continued fraction approxi-
mations to v/N appear in Table 7.1. Three values of P2 — NQ? are

355

Convergent P/Q Pz N -Q?
1049/1 1988 = 22.7.71
1048/1 ~109 = —109

19913/19 AT6 = 22.7.17
80700/77 —677 = —677
181313/173 1292 = 22-.17-19
262013/250 —331=-331
1491378/1423 1207 = 17-71
1753391/1673 —796 = —22.199
3244769/3096 1153 = 1153
4998160/4769 —493 = —17-29

18239249/17403 1084 = 22-271

23237409/22172 -911 = -911

41476658/39575 839 = 839

64714067/61747 | —1228 = —22.307

106190725/101322 133= 7-19

TABLE 7.1. Approximations to /1098413

199132 — N - 192 =476 =22 - 7- 17,
1813132 — N - 1732 = 1292 = 22 . 17 - 19, (7.7)
1061907252 — N - 1013222 = 133 = 7 - 19.

The product of the three right sides in (7.7) is a square, namely 2*-72.172.192.
Multiply the three left sides and suppress the multiples of N to reveal

(19913 - 181313 - 106190725)* = (2% - 7-17 - 19)2 (mod N).

Reduce each parenthesized argument modulo N to get 90442 = 90442 (mod N).
Unfortunately, this trivial congruence does not yield a factorization. We could
try more, but will instead illustrate other algorithms.

Table 7.1 gives values of P and @ to full precision. The recurrences for P
and @ allow one to work with P mod N and Q mod N instead of P and @
themselves, and can be evaluated quickly. For example, the numerator and
denominator of the last entry in Table 7.1 are the sums of those parts of the
two previous entries.

Some small primes (e.g., 3, 5, 11) are missing in Table 7.1. This is because
they are not quadratic residues modulo N. If p|(P%2 — NQ?) where ged(P, Q) =
1, then N must be a quadratic residue modulo p unless p | N. Unless N is a
perfect square, only half of the primes (asymptotically) have N as a quadratic
residue. If B is the upper limit on the factor base, then the factor base size is
about 7(B)/2 rather than 7(B).

356

7.5. Sieving

Much of the time in CFRAC is spent factoring the residues P? — NQ?2, to
test whether they are smooth. This work is done primarily by trial division,
although one may employ the other methods in this survey too.

Quadratic Sieve (see §7.6) eliminates this burden. If f € Z[X]is a univariate
polynomial with integer coefficients, and p is a prime, then the values of x for
which p | f(z) lie in a few arithmetic progressions. By (3.2), if k is an integer,
f(z 4+ kp) = f(z) (mod p). Therefore f(z + kp) will be divisible by p if and
only if f(z) is divisible by p.

Suppose we want to evaluate a polynomial f at several consecutive values
of x and check each value for smoothness. Start by building a table of values
of f(z). For each prime p in our factor base, find the roots of f modulo p, by
factoring f(X) over GF(p) [?, §4.6.2]. Then, for each z such that f(z) =0
(mod p), replace our tabulated value of f(z) by f(z)/p. After processing all
primes in our factor base, if any table entry is £1, then the corresponding f(z)
was smooth.

This procedure can be improved considerably. One improvement tabulates
log|f(x)| rather than f(z), and subtracts logp rather than dividing by p. The
logarithms can be approximate, perhaps to base 2. At the end, look for small
values in the table, not just for a value of log1 = 0. This procedure will also
find some values of = for which f(z) is smooth but not squarefree (i.e., for
which a prime power divides f(z)).

7.6. Quadratic sieve

Using the ideas in the last section, Quadratic Sieve [14] looks at the values
of a quadratic polynomial at successive points. We illustrate it by a detailed
example. Define f(X) = X2 — N, where N = 1098413. After sieving f(z) for
values of near [\/NJ = 1048, we accumulate data similar to that in Figure

7.2.

The third, sixth, and seventh columns in the lower table of Figure 7.2 sum to
zero modulo 2. Hence the product

F(1051)f£(1119)f(1142) = (22-7-13-17)(22-7-17%-19)(7%-13-17-19)
= 24.74.132.174.192

gives a square on the right. Take square roots (and recall the definition of f)
to derive:

(1051 -1119-1142)* = (22 - 72 - 13- 177 - 19)? (mod N).

A calculation gives 1051-1119-1142 = 810112 (mod N) and 2%.7%2.13-172.
19 = 810112 (mod N). Unfortunately the congruence 8101122 = 8101122
(mod N) does not help.

357

f(925)=-22.7-13.23-29

f£(1047) = —22.19-29

f(1051) =22.7-13-17

f(1063) =22 .73 .23

f(1077) =22 .7-13°

f(1119) =22.7-17%-19

f(1142) =72.13-17-19

925 1047 1051 1063 1077 1119 1142
p=—-1]1 1 0 0 0 0 0
p=2 0 0 0 0 0 0 0
p="7 1 0 1 1 1 1 0
p=13 | 1 0 1 0 1 0 1
p=17 1 0 0 1 0 0 0 1
p=19 | 0 1 0 0 0 1 1
p=23] 1 0 0 1 0 0 0
p=29 | 1 1 0 0 0 0 0

FIGURE 7.2. Smooth values of f(X) = X2 — 1098413 and associated binary
matrix

7.6.1. Multiple Polynomials.
If we sieve the 2M values of f(z) for |z — \/N‘ < M, then the largest residue is

about 2M+/N (assuming M < v/N). MONTGOMERY [?] found a way to stunt
this growth as M grows. His variation is called the Multiple Polynomial
Quadratic Sieve, or MPQS.

Letk=1if N=1 (mod4)andk=4if N =3 (mod 4). Find a quadratic
polynomial g(X) = a?X? + bX + ¢ such that b?> — 4a?c = kN. For example,
when N = 1098413 and k = 1, we might pick

g(X) =841X2 + 293X — 301. (7.8)

We discuss how to choose g below. Once g is selected, we sieve to find values
of x for which g(z) is smooth. In this case both

g(—1)=247=13-19 and ¢(1)=833="7%-17

are smooth. Because

2 2 2 2
g(X) = (aX—I— i) - w = (aX + ;) (mod N),

2a 4a? a

the square roots of 247 and 833 modulo 1098413 are —29 +293/58 = —1389/58
and 29 +293/58 = 1975/58, respectively. These can be merged with other data
in Figure 7.2 to produce squares on both sides. One such product

358

(1051 - 1077 - 1928)? = £(1051) £(1077)g(1) = 2* - 74134 . 172 (mod N)

yields 8381992 = 5631082 (mod N), which factors N.

The polynomial g(X) in (7.8) can be found by first selecting an odd prime
value for a (here 29). We require that kN be a quadratic residue modulo a.
Solve b2 = kN (mod a) for by. Then solve (by + fa)> = kN (mod a?) for
L. Set b = by + fa or b = by + fa — a?, whichever has the same parity as kN.
Define ¢ = (b® — kN)/4a?. By construction, c is an integer and b? —4a?c = kN.

When sieving over |z| < My, the values of a, b, ¢ should be picked so that
the values |g(—My)|, |g(0)], and |g(Mp)| are approximately equal. That is,
the parabola should cross the z—axis twice in the interval [— My, My] and the
three extrema should have comparable magnitudes. The solution (subject to

b? — 4a’c = kN) is

anivl;wN/z, b0, e~ —My\/EN/S.

0

The largest polynomial value is about |c|, or My\/kN/8, which is at most
Mo+/N/2. To sieve 2M values of z, one can use M /M, different polynomials,
sieving 2Mj values per polynomial. The largest residual is O(MO\/N) rather
than O(M+/N). Details are in [?].

Since values from different polynomials can be combined, the sieving portion
of the MPQS algorithm is easily parallelized. Each processor sieves different
polynomials, and all smooth residues go to a central site. This was used for
the RSA—-129 factorization mentioned in §8.1.

As in CFRAC, the only primes in the factor base are those for which £V is
a quadratic residue.

7.7. Large Prime Variations

The sieving procedure in §7.5 looks for values of = such that f(z) is smooth with
respect to the factor base. The algorithm is easily modified to also find values
of for which f(z) is a smooth number times a prime not much larger than the
factor base bound, by adjusting the threshold used when inspecting logarithms
after sieving. The extra prime in the factorization of f(z) is called a large
prime. If one finds two values of z for which f(z) has the same large prime,
then the corresponding congruences can be multiplied together and treated as
a pair for the rest of the algorithm.

This procedure, called the large prime variation, is compatible with the
use of multiple polynomials described in the last section. For example, both
£(1040) = —17-23-43 and g(0) = —7-43 have 43 as the only prime exceeding 29.
After doing the linear algebra phase, we decide to combine these with three
entries in Figure 7.2 to get the product

9(0)£(1040) £(1051) £(1063) £(1077)
= (—7-43)(—17-23-43)(22-7-13-17)(22 - 73.23) (22 - 7-13%)
—26.76.13%.172.232. 432,

359

This gives the congruence
293 2
<§ +1040 - 1051 - 1063 - 1077) = (2°-7%.13%.17-23.43)°,

which simplifies to 9700092 = 2578942 and factors N.
Another variation of MPQS uses two large primes instead of one; this version

is known as PPMPQS. See [6].

7.8. Number Field Sieve
The Number Field Sieve (NFS) [?, 7] uses ideas from algebraic number theory.
It made newspaper headlines in 1990 when it was used to factor the 148-digit
cofactor (2512 4 1)/2424833 of the ninth Fermat number|[?].

Suppose N is a composite integer to be factored. NFS has four main phases:

Polynomial selection. Select two irreducible univariate polynomials
f(X) and g(X) with “small” integer coefficients for which there exists an
integer m such that

f(m)=g(m)=0 (mod N).

The polynomials f and g should not have a common factor over Q. Often
one polynomial is X —m, and the other has the coefficients of the base-m
expansion of N, for suitable m.

There is no known “good” way to pick these polynomials, unless our
original number has a special algebraic form such as the (121! —1)/11
shown in §8.2. For the ninth Fermat number, the polynomials were chosen
to be X — 2193 and X5 — 8, with common root m = 2103,

Let « denote a (complex) root of f and S denote a root of g.
Sieving. This phase finds pairs (a, b) such that ged(a, b) = 1 and such
that both

b8 £ (a /b) and b3°89) g(a /b) (7.9)

are smooth with respect to a chosen factor base.

The sieving phase can fix b and search for values of a such that both poly-
nomial functions in (7.9) are smooth, using the ideas in §7.5. Although
we require two values be smooth (rather than one value, as in MPQS),
the values in (7.9) are sufficiently smaller that we gain overall.

Linear algebra. The expressions in (7.9) are the norms of the algebraic
numbers a —ba and a — b3, multiplied by the leading coefficients of f and
of g, respectively. The principal ideals (a — ba) and (a — bj3) factor into
products of prime ideals in the number fields Q(«) and Q(3), respectively.
All prime ideals appearing in these factorizations have small norm (since
the norms are assumed to be smooth), so only a few different prime ideals

360

can appear in these factorizations. Use linear algebra to find a set S of
indices such that the two products

[I((a;i =bia)) and J]((a: — b:B)) (7.10)

i€S ieS
are both squares of products of prime ideals.

Square root. Using the set S in (7.10), try to find algebraic numbers
o € Q(a) and ' € Q(B) such that

()’ = H(ai — b;a) and (8 = H(ai — b;3).
i€S i€S

Couveignes’s algorithm [4] works if the polynomials f and g have odd
degrees; Montgomery’s square root algorithm [8] allows arbitrary degree.

Let ¢o : Qo) — Z/NZ and ¢ : Q(8) — Z/NZ be homomorphisms
induced by setting ¢ () = ¢3(8) = m, where m is the common root of
f and g. The congruence

¢a(a,)2 = ba ((0/)2) = ba (H(ai — biOé)>

€S

= [[(a: — bim)= ¢5(8')* (mod N)

€S

has the form (7.1); the two sides will be coprime to N if none of the
factorizations in (7.9) share a factor with N.

7.8.1. Example of NFS.
The first step in NFS is polynomial selection. If we somehow observe that

N = 1098413 = 1093500 + 4913 = 12 - 453 4+ 173,
then we can choose
f(X)=X*+12 and g(X)=45X —17.

Both polynomials vanish modulo N when X = 17/45 = 634639 (mod 1098413).
After sieving and linear algebra, we construct the product

hX)=—(X —6)(2X +3)(3X —7)(3X +1
(5X —2)(8X — 3)(10X +9). (7.11)

We claim that (7.11) gives squares on both sides. More precisely, with a =

v/—12 and ¢, () = 17/45,

361

17 28.112.132.232 52624\ °
h — = =
45 312. 54 18225

and

h(a) = 7400772 + 1138236 — 10549502 = ()2, where

o' = 2694 + 213a — 2802,
5610203
Paa) = — o

. . 5610203 52624 50439203
The factor 1951 divides the numerator of 5005 18225 — 1895

When selecting (7.11), we included a factor of —1 on both sides. The con-
gruence —1 = —1 is a free relation, much as in §7.3. There is also one free
relation for each prime p such that the polynomials f(X) and g(X) both split
completely modulo p, but no such relations were used in (7.11).

8. IMPROVEMENTS IN TECHNOLOGY

8.1. RSA-129 factorization

In a 1977 MIT technical memo, which Martin Gardner summarizes in his Math-
ematical Games column[5], Rivest et al. challenge the public to factor a 129-
digit which they claim is the product of 64—digit and 65—digit factors. Rivest
estimates that the required running time, using the best algorithms and ma-
chines available in 1977, would be 40 quadrillion years. It took much less time
than predicted. After an 8-month worldwide effort [?] organized by Derek
Atkins, Michael Graff, Arjen Lenstra, and Paul Leyland, the factorization was
completed by PPMPQS in April, 1994. This effort took an estimated 5000
MIPS years. It found

RSA-129 = 114381625 7578888676 6923577997 6146612010 2182967212
4236256256 1842935706 9352457338 9783059712
3563958705 0589890751 4759929002 6879543541,

= P64 " P65, where
P64 = 3490 5295108476 5094914784
9619903898 1334177646 3849338784 3990820577,
P65 = 32769 1329932667 0954996198

8190834461 4131776429 6799294253 9798288533.

8.2. Fuactorizations found at CWI
In June, 1994, researchers at CWI and in Oregon, USA achieved some record
factorizations using the number field sieve.

The first was the 162-digit Cunningham number Nijgy = (1251 — 1)/11.
No factors were known. At Oregon State University (OSU) in USA, Peter
Montgomery et al had sieved this number using NF'S with the two polynomials

12X° -1 and X — 1230,

362

They used about 30 workstations at OSU over an 8-week period during spring
and summer, 1993. The researchers gathered 8.98 million relations, but were
unable to process the data and find the factorization. During 19931994, while
Montgomery was at CWI, the Computational Number Theory group at CWI
completed the linear algebra and square root phases of the work. They found
the factorization Nigo = paq - P119, Where

Nig2 = 822196205286 5970195266 0120743076 1004273909
2435707339 6551677033 9373353207 4305023580

2427303275 6332005408 0668946066 9679221954

5093967127 3308456244 6289606063 0268212317,

paa = 1653 7237851564 6889242614 0704164885 3990657743,
P119 = 497178678 0032337881 8763399005 9600164874
7659834953 9211569747 0057591532 2824191116

7043200927 0168842857 3103024883 1349126419.

The special algebraic form of Nigo simplified the polynomial selection phase.
This beat the 158-digit record, which A.K. Lenstra and Dan Bernstein had
previously achieved using NF'S.

The OSU team also sieved the following 105-digit cofactor of 3367 — 1:

Nigs = 75870 1086707710 3419834518
9863846063 0208179089 1150247368 3674638356
7258455011 6888623834 4212966512 3030350997

Using the data gathered at OSU, the CWI group found Nio5 = ps2 - ps4, where

P52 = 151149525784
0070716998 8656940229 3793503992 8231350493,
P54 = 5019 5399738924

4528404247 9062790906 5410546896 2124251929.

This time the polynomial selection phase was more complicated. The re-
searchers used two quadratic polynomials:

f(X) = 342910527737 X2 + 868170 6933351946 5483641612 X
+540759062 6047829713 5713953618 6424874771,

g(X) = 1242060255079 X2 — 9130492 7318176881 6962553218 X
+129128767300 0652336311 6822953626 7982420800.

The resultant of these polynomials is 9Npg5, so they share a common root
modulo N.

The Nig5 was the first large number completed by NFS which did not have
a special form. The record was broken a month later when three researchers
completed a 116—digit cofactor of the partition number p(11887), using a fifth—
degree polynomial and a linear polynomial. The polynomial selection, sieving,
and linear algebra phases were done by Arjen Lenstra and Bruce Dodson in
the USA; the square root phase was done by Peter Montgomery at CWL.

363

For Nig2, the factor bases had all primes below 2 million (on small worksta-
tions) or below 3.5 million (on SPARC 10’s). The program allowed two large
primes up to 100 million on each side. The (sparse) matrix was 828077 x 833017
with an average of 32.3 nonzero entries per column.

For Njgs5, the factor bases contained all primes below 1.6 million and large
primes went to 30 million. The sieving was performed in such a way that every
relation contained at least one large prime between 20 million and 30 million,
and could contain five large primes. The matrix was 1284719 x 1294861 with
an average of 30.1 nonzero entries per column

These matrices are larger than any previous matrices arising from integer fac-
torization problems. The Njg5 matrix would require 200 gigabytes of memory
to store in dense form, which is more than most sites have even on secondary
storage. This prevented the Oregon researchers from finishing the work. The
CWI researchers used a novel Block Lanczos algorithm [7] for the linear algebra
phase, and completed the larger problem in 7.5 hours on a Cray C90 at the
Academic Computing Center Amsterdam (SARA).

9. ACKNOWLEDGEMENTS

This work was funded by CWI Centrum voor Wiskunde en Informatica (Ams-
terdam) and by the Stieltjes Institute for Mathematics (Leiden). The manuscript
was revised while the author visited Bellcore (USA). Thanks to Richard Brent,
Mary Flahive, Marije Huizing, Arjen Lenstra, and Herman te Riele for review-
ing early drafts of this manuscript.

REFERENCES

1. John Brillhart, Peter L. Montgomery, and Robert D. Silverman. Ta-
bles of Fibonacci and Lucas factorizations. Mathematics of Computation,
50(181):251-260 & S1-S15, January 1988.

2. Don Coppersmith. Solving linear equations over GF(2): Block Lanczos
algorithm. Linear Algebra and its Applications, 192:33—-60, October 1993.

3. Don Coppersmith. Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Mathematics of Computation, 62(205):333—
350, January 1994.

4. Jean-Marc Couveignes. Computing a square root for the number field sieve.
In AK. Lenstra and H.W. Lenstra, Jr., editors, The Development of the
Number Field Sieve, volume 1554 of Lecture Notes in Mathematics, pages
95-102. Springer—Verlag, Berlin, 1993.

5. Martin Gardner. Mathematical games. A new kind of cipher that would
take millions of years to break. Scientific American, 237(2):120-124, August
1997.

6. A.K. Lenstra and M.S. Manasse. Factoring with two large primes. Mathe-
matics of Computation, 63:785-798, 1994.

7. Peter L. Montgomery. A block Lanczos algorithm for finding dependencies
over GF(2). Technical report, CWI Amsterdam, 1994. To appear.

364

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Peter L. Montgomery. Square roots of products of algebraic numbers. In
Walter Gautschi, editor, Mathematics of Computation 1943-1993: a Half-
Century of Computational Mathematics. Proceedings of Symposia in Ap-
plied Mathematics, American Mathematical Society, 1994. To appear.
Peter L. Montgomery. Vectorization of the elliptic curve method. Technical
report, CWI Amsterdam, 1994. To appear.

Michael A. Morrison and John Brillhart. A method of factoring and the
factorization of F;. Mathematics of Computation, 29(129):183-205, January
1975.

J.M. Pollard. Theorems on factorization and primality testing. Proc. Camb.
Phil. Soc., 76(2):521-528, September 1974.

J.M. Pollard. A Monte Carlo method for factorization. BIT, 15(3):331-334,
1975.

Carl Pomerance. Analysis and comparison of some integer factoring al-
gorithms. In H.W. Lenstra, Jr. and R. Tijdeman, editors, Computational
Methods in Number Theory, Part I, pages 89—130. Mathematisch Centrum,
Amsterdam, 1982. Math. Centrum Tract 154.

Carl Pomerance. The quadratic sieve factoring algorithm. In T. Beth,
N. Cot, and I. Ingemarsson, editors, Advances in Cryptology, Proceedings
of EUROCRYPT 84, volume 209 of Lecture Notes in Computer Science,
pages 169-182, New York, 1985. Springer—Verlag.

RSA Challenge Administrator. Information about RSA Factoring Chal-
lenge, March 1991. Send electronic mail to challenge—info@rsa.com.
Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of
Graduate Texts in Mathematics. Springer—Verlag, New York, 1986.
Robert D. Silverman. Massively distributed computing and factoring large
integers. 34(11):95-103, November 1991.

Douglas H. Wiedemann. Solving sparse linear equations over finite fields.
IEEFE Trans. Inform. Theory, 32(1):54-62, January 1986.

H.C. Williams. A p+ 1 method of factoring. Mathematics of Computation,
39(159):225-234, July 1982.

H.C. Williams and J.O. Shallit. Factoring integers before computers. In
Walter Gautschi, editor, Mathematics of Computation 1943-1993: a Half-
Century of Computational Mathematics. Proceedings of Symposia in Ap-
plied Mathematics, American Mathematical Society, 1994. To appear.

365

